Low Dose Radiation Biology: State-of-the art and future challenges

DEGRO 2023 – Refresherkurs Gutartige Erkrankungen

Dr. Lisa Deloch Radiation Osteoimmunology Group

Translational Radiobiology Head: Prof. Dr. U.S. Gaipl Strahlenklinik Head: Prof. Dr. R. Fietkau

Uniklinikum Erlangen

TOGETHER [BMBF, 02NUK073]

GREWIS-Project [BMBF, 02NUK017G]

GEFÖRDERT VOM Bundesministerium für Bildung und Forschung

Conflict of Interest

Berater- und Gutachtertätigkeiten Nein

Honorare

Nein

Forschungsfinanzierung Nein

Eigentümerinteressen (Patent, Urheberrecht, Verkaufslizenz) Nein

Geschäftsanteile, Aktien, Fonds Nein

Arthroses as economically relevant disease

- Most common disease of the joints
- · Most common reason for disability
- Increasing incidence and prevalence
- Cumulative direct and indirect costs of 7.6 billion Euro/year

Arthroses/Osteoarthritis

- Complex, multifactorial condition affecting the entire joint
- **Mechanical** and **inflammatory** components (risk factors: age, obesity, hormones, genetic factors)
- Leading degenerative joint disease;
- Not only mechanical cartilage degradation → complex interaction of various tissue and cell types, strong involvement of the immune system

• **Conservative measures**: Medication, physical therapy, ergotherapy orthopedic measures, ...

• **Surgical measures**: joint preserving surgery, joint replacement, ...

• But: ~20% non-responders

Treatment Options

Treatment Options

 "Window of opportunity": Early treatment essential

\rightarrow LD-RT!

Low-dose Radiotherapy – Current usage in Germany

In Germany:

• Up to 50.000 LD-RT patients/year

• Chronic, degenerative, musculoskeletal disorders:

→ improved pain management → improved mobility

• Data: in patients → mostly **empirical** and/or **not supported by placebo-controlled** studies preclinical → exact mechanisms unknown, involvement of the **immune system**

→ often: Hesitation to use LD-RT as some existing treatment strategies are better examined

LD-RT as Effective Targeted Therapy

 Multicenter Study
 > Strahlenther Onkol. 2020 Aug;196(8):715-724.

 doi: 10.1007/s00066-019-01563-1. Epub 2019 Dec 23.

Radiotherapy for osteoarthritis-an analysis of 295 joints treated with a linear accelerator

Matthias G Hautmann ¹, Philipp Rechner ², Ulrich Neumaier ³, Christoph Süß ⁴, Barbara Dietl ⁴, Franz Josef Putz ⁵, Michael Behr ⁶, Oliver Kölbl ⁴, Felix Steger ⁴

Friedrich-Alexander-Universität

Low Dose Radiation Therapy, Particularly with 0.5 Gy, Improves Pain in Degenerative Joint Disease of the Fingers: Results of a Retrospective Analysis

Anna-Jasmina Donaubauer,^{1,†} Jian-Guo Zhou,^{1,2,†} Oliver J. Ott,¹ Florian Putz,¹ Rainer Fietkau,¹ Ludwig Keilholz,³ Udo S. Gaipl,^{1,‡} Benjamin Frey,^{1,‡} and Thomas Weissmann^{1,†‡}

 Multicenter Study
 > Strahlenther Onkol. 2021 Oct;197(10):895-902.

 doi: 10.1007/s00066-021-01816-y. Epub 2021 Aug 3.

Low-dose radiotherapy for painful osteoarthritis of the elderly: A multicenter analysis of 970 patients with 1185 treated sites

Alexander Rühle ¹ ² ³, Elisabeth Tkotsch ¹, Rainer Mravlag ⁴, Erik Haehl ¹ ², Simon K B Spohn ¹ ², Constantinos Zamboglou ¹ ², Peter E Huber ³ ⁴, Jürgen Debus ⁴, Anca-Ligia Grosu ¹ ², Tanja Sprave ¹ ², Nils H Nicolay ¹ ² ³.
 Multicenter Study
 > Strahlenther Onkol. 2019 Dec;195(12):1060-1067.

 doi: 10.1007/s00066-019-01500-2. Epub 2019 Jul 25.

Re-irradiation for osteoarthritis-retrospective analysis of 217 joints

Matthias G Hautmann ¹, Philipp Rechner ², Matthias Hipp ³, Ulrich Neumaier ⁴, Felix Steger ⁵, Fabian Pohl ⁵, Markus Weber ⁶, Oliver Kölbl ⁵, Christoph Süß ⁵

Iedian pain on the numeric rating scale (NRS) during the follow-up

Randomized Controlled Trial> Ann Rheum Dis. 2019 Jan;78(1):83-90.doi: 10.1136/annrheumdis-2018-214104. Epub 2018 Oct 26.

Effectiveness of low-dose radiation therapy on symptoms in patients with knee osteoarthritis: a randomised, double-blinded, sham-controlled trial

Elien A M Mahler ¹, Michiel Jm Minten ², Mathilde M Leseman-Hoogenboom ³, Philip M P Poortmans ³, ⁴, Jan Willem H Leer ³, Simone S Boks ⁵, Frank H J van den Hoogen ⁶, Alfons A den Broeder ², Cornelia H M van den Ende ²

Randomized Controlled Trial> Osteoarthritis Cartilage. 2018 Oct;26(10):1283-1290.doi: 10.1016/j.joca.2018.06.010. Epub 2018 Jul 7.

Lack of beneficial effects of low-dose radiation therapy on hand osteoarthritis symptoms and inflammation: a randomised, blinded, shamcontrolled trial

M J M Minten ¹, M M Leseman-Hoogenboom ², M Kloppenburg ³, M C Kortekaas ⁴, J W Leer ⁵, P M P Poortmans ⁶, F H J van den Hoogen ⁷, A A den Broeder ⁸, C H M van den Ende ⁹

 Response to therapy often only judged on a clinical basis/imaging

 Current study limitations: Applied dosage Patient selection Number of series

Need for biological data as proof of effectiveness!

Classical Inflammatory Process

- Inflammatory stimulus
- → Enlargement and increased permeability of blood vessels
- → Alteration of adhesion properties of endothelial cells
- → Attachment and tissue migration of leukocytes
- → Resolved inflammatory stimulus

Joint-specific Cell Types Involved in Inflammatory Processes

Synovialfibroblasts and Macrophages→
 Initiiation and upkeep of inflammation

Joint-specific Cell Types Involved in Inflammatory Processes

Synovialfibroblasts and Macrophages→
 Initiiation and upkeep of inflammation

 Disturbed bone metabolism → more bone loss (Osteoclasts) than build up (Osteoblasts)

 \rightarrow Progressive destruction of joints

Endothelial Cells	Leukocytes
Modulation of secreted cytokines (pro- inflammatory↓; anti-inflammatory↑) Hampered attachment of leukocytes Reduced levels of ROS	Hampered attachment to endothelial cells Anti-inflammatory modulation of the cytokine milieu Increased rate of apoptosis

Endothelial Cells	Leukocytes	Macrophages	
Modulation of secreted cytokines (pro- inflammatory↓; anti-inflammatory↑) Hampered attachment of leukocytes Reduced levels of ROS	Hampered attachment to endothelial cells Anti-inflammatory modulation of the cytokine milieu Increased rate of apoptosis	Reduced migration and enhanced chemotaxis Reduction of inflammatory molecules and cytokines No effect on phagocytosis and survival No significant modulation of macrophage phenotypes Modulation of T cell mediated immune	

Endothelial Cells	Leukocytes	Macrophages	Fibroblast-like Synoviocytes
Modulation of secreted cytokines (pro- inflammatory↓; anti-inflammatory↑) Hampered attachment of leukocytes Reduced levels of ROS	Hampered attachment to endothelial cells Anti-inflammatory modulation of the cytokine milieu Increased rate of apoptosis	Reduced migration and enhanced chemotaxisReduction of inflammatory molecules and cytokinesNo effect on phagocytosis and survivalNo significant modulation of macrophage phenotypesModulation of T cell mediated immune reactions	Weakened aggressive phenotype Increased apoptosis Decreased cell numbers Reduced secretion of infammatory cytokines

Endothelial Cells	Leukocytes	Macrophages	Fibroblast-like Synoviocytes	Osteoclasts
				H ⁺ TRAP Catk
Modulation of secreted cytokines (pro- inflammatory↓; anti-inflammatory↑) Hampered attachment of leukocytes Reduced levels of ROS	Hampered attachment to endothelial cells Anti-inflammatory modulation of the cytokine milieu Increased rate of apoptosis	Reduced migration and enhanced chemotaxis Reduction of inflammatory molecules and cytokines No effect on phagocytosis and survival No significant modulation of macrophage phenotypes Modulation of T cell mediated immune	Weakened aggressive phenotype Increased apoptosis Decreased cell numbers Reduced secretion of infammatory cytokines	Reduction of differentiated cells Reduced bone resorption Hampered osteoclastogenesis Decrease in size/nuclei

Endothelial Cells	Leukocytes	Macrophages	Fibroblast-like Synoviocytes	Osteoclasts	Osteoblasts
		en e		H ^H TRAP catk	Osteoid
Modulation of secreted cytokines (pro- inflammatory↓; anti-inflammatory↑) Hampered attachment of leukocytes Reduced levels of ROS	Hampered attachment to endothelial cells Anti-inflammatory modulation of the cytokine milieu Increased rate of apoptosis	Reduced migration and enhanced chemotaxisReduction of inflammatory molecules and cytokinesNo effect on phagocytosis and survivalNo significant modulation of macrophage phenotypesModulation of T cell mediated immune reactions	Weakened aggressive phenotype Increased apoptosis Decreased cell numbers Reduced secretion of infammatory cytokines	Reduction of differentiated cells Reduced bone resorption Hampered osteoclastogenesis Decrease in size/nuclei	Increased mineralisation Increased expression of molecules inhibiting osteoclastogenesis Increased fracture healing

Randomized Controlled Trial> Ann Rheum Dis. 2019 Jan;78(1):83-90.doi: 10.1136/annrheumdis-2018-214104. Epub 2018 Oct 26.

Effectiveness of low-dose radiation therapy on symptoms in patients with knee osteoarthritis: a randomised, double-blinded, sham-controlled trial

Elien A M Mahler ¹, Michiel Jm Minten ², Mathilde M Leseman-Hoogenboom ³, Philip M P Poortmans ³, ⁴, Jan Willem H Leer ³, Simone S Boks ⁵, Frank H J van den Hoogen ⁶, Alfons A den Broeder ², Cornelia H M van den Ende ²

Randomized Controlled Trial> Osteoarthritis Cartilage. 2018 Oct;26(10):1283-1290.doi: 10.1016/j.joca.2018.06.010. Epub 2018 Jul 7.

Lack of beneficial effects of low-dose radiation therapy on hand osteoarthritis symptoms and inflammation: a randomised, blinded, shamcontrolled trial

M J M Minten ¹, M M Leseman-Hoogenboom ², M Kloppenburg ³, M C Kortekaas ⁴, J W Leer ⁵, P M P Poortmans ⁶, F H J van den Hoogen ⁷, A A den Broeder ⁸, C H M van den Ende ⁹

 Response to therapy often only judged on a clinical basis/imaging

• Current study limitations: Applied dosage Patient selection Number of series

Can't we just use a lower dose as control instead of a placebo group?

CD25 = Marker on activated CD4+ T cells

CD25 = Marker on activated CD4+ T cells

Cell death of endothelial cells after LD-RT

CD25 = Marker on activated CD4+ T cells Cell death of endothelial cells after LD-RT

Activity of AP-1 as transcriptionfactor of Immun-effector molecules

CD25 = Marker on activated CD4+ T cells Cell death of endothelial cells after LD-RT

Activity of AP-1 as transcriptionfactor of Immun-effector molecules

→ NO linear dose-effect connection for cells (of the immune system)!

Randomized Controlled Trial> Ann Rheum Dis. 2019 Jan;78(1):83-90.doi: 10.1136/annrheumdis-2018-214104. Epub 2018 Oct 26.

Effectiveness of low-dose radiation therapy on symptoms in patients with knee osteoarthritis: a randomised, double-blinded, sham-controlled trial

Elien A M Mahler ¹, Michiel Jm Minten ², Mathilde M Leseman-Hoogenboom ³, Philip M P Poortmans ³, ⁴, Jan Willem H Leer ³, Simone S Boks ⁵, Frank H J van den Hoogen ⁶, Alfons A den Broeder ², Cornelia H M van den Ende ²

Randomized Controlled Trial> Osteoarthritis Cartilage. 2018 Oct;26(10):1283-1290.doi: 10.1016/j.joca.2018.06.010. Epub 2018 Jul 7.

Lack of beneficial effects of low-dose radiation therapy on hand osteoarthritis symptoms and inflammation: a randomised, blinded, shamcontrolled trial

M J M Minten ¹, M M Leseman-Hoogenboom ², M Kloppenburg ³, M C Kortekaas ⁴, J W Leer ⁵, P M P Poortmans ⁶, F H J van den Hoogen ⁷, A A den Broeder ⁸, C H M van den Ende ⁹

 Response to therapy often only judged on a clinical basis/imaging

 Current study limitations: Applied dosage Patient selection Number of series

Need for biological data as proof of effectiveness!

What dose should we be using? \rightarrow Clinical Answer

Randomized Controlled Trial> Strahlenther Onkol. 2014 Mar;190(3):293-7.doi: 10.1007/s00066-013-0504-1. Epub 2014 Jan 16.

The Erlangen Dose Optimization trial for low-dose radiotherapy of benign painful elbow syndrome. Long-term results

O J Ott ¹, S Hertel, U S Gaipl, B Frey, M Schmidt, R Fietkau

70 60 50 VAS value 40 30 20 10 84 82 0.64 39 37 0.93 91 0.16 88 0.94 81 0.56 61 0.12 p-value: Baseline After 1st Before 2nd Early Delayed Long-term series series response response response

Randomized Controlled Trial > Strahlenther Onkol. 2014 Jul;190(7):671-5.

Radiotherapy for benign calcaneodynia: long-term

Oliver J Ott ¹¹, Carolin Jeremias, Udo S Gaipl, Benjamin Frey, Manfred Schmidt, Rainer Fietkau

results of the Erlangen Dose Optimization (EDO) trial

doi: 10.1007/s00066-014-0618-0. Epub 2014 Mar 26.

Friedrich-Alexander-Universität Medizinische Fakultät Randomized Controlled Trial > Strahlenther Onkol. 2012 Dec;188(12):1108-13.

doi: 10.1007/s00066-012-0237-6. Epub 2012 Nov 7.

Benign painful shoulder syndrome: initial results of a single-center prospective randomized radiotherapy dose-optimization trial

Radiotherapy 3 vs 6 Gy in Gonarthrosis and Coxarthrosis (RAGOCO)

Servier, Medical Art

What dose should we be using? \rightarrow Clinical Answer

Randomized Controlled Trial> Strahlenther Onkol. 2014 Mar;190(3):293-7.doi: 10.1007/s00066-013-0504-1. Epub 2014 Jan 16.

The Erlangen Dose Optimization trial for low-dose radiotherapy of benign painful elbow syndrome. Long-term results

O J Ott ¹, S Hertel, U S Gaipl, B Frey, M Schmidt, R Fietkau

Randomized Controlled Trial > Strahlenther Onkol. 2012 Dec;188(12):1108-13.

doi: 10.1007/s00066-012-0237-6. Epub 2012 Nov 7.

Benign painful shoulder syndrome: initial results of a single-center prospective randomized radiotherapy dose-optimization trial

Radiotherapy 3 vs 6 Gy in Gonarthrosis and Coxarthrosis (RAGOCO)

Uniklinikum

Erlangen

Servier, Medical Art

\rightarrow No superiority in 1.0 vs. 0.5 Gy (single dose) \rightarrow 0.5 Gy!

 Randomized Controlled Trial
 > Strahlenther Onkol. 2014 Jul;190(7):671-5.

 doi: 10.1007/s00066-014-0618-0. Epub 2014 Mar 26.

Radiotherapy for benign calcaneodynia: long-term results of the Erlangen Dose Optimization (EDO) trial

Oliver J Ott ¹, Carolin Jeremias, Udo S Gaipl, Benjamin Frey, Manfred Schmidt, Rainer Fietkau

Ideal dose for patient treatment? -> Biological Answer

Ideal dose for patient treatment? -> Biological Answer

в

ł

- 0.5 Gy increased proliferation and viability in osteoblasts
- 0.5 Gy: Increased fracture healing

0.1 and 0.5 Gy increased chemotaxis Reduced IL1 β levels, increased TGF- β levels

0.5 Gy reduced leukocyte adhesion

Ideal Dose within the Joint? Clinical Data 🔊 Biological Data

In line with patient data: No benefit for higher doses → 0.5 Gy biological most effective dose

Randomized Controlled Trial> Ann Rheum Dis. 2019 Jan;78(1):83-90.doi: 10.1136/annrheumdis-2018-214104. Epub 2018 Oct 26.

Effectiveness of low-dose radiation therapy on symptoms in patients with knee osteoarthritis: a randomised, double-blinded, sham-controlled trial

Elien A M Mahler ¹, Michiel Jm Minten ², Mathilde M Leseman-Hoogenboom ³, Philip M P Poortmans ³, ⁴, Jan Willem H Leer ³, Simone S Boks ⁵, Frank H J van den Hoogen ⁶, Alfons A den Broeder ², Cornelia H M van den Ende ²

Randomized Controlled Trial> Osteoarthritis Cartilage. 2018 Oct;26(10):1283-1290.doi: 10.1016/j.joca.2018.06.010. Epub 2018 Jul 7.

Lack of beneficial effects of low-dose radiation therapy on hand osteoarthritis symptoms and inflammation: a randomised, blinded, shamcontrolled trial

M J M Minten ¹, M M Leseman-Hoogenboom ², M Kloppenburg ³, M C Kortekaas ⁴, J W Leer ⁵, P M P Poortmans ⁶, F H J van den Hoogen ⁷, A A den Broeder ⁸, C H M van den Ende ⁹

 Response to therapy often only judged on a clinical basis/imaging

 Current study limitations: Applied dosage
 Patient selection
 Number of series

Need for biological data as proof of effectiveness!

Patient Selection? – Inflammatory Status

→ The inflammatory background has an influence on cellular responses after LD-RT

Rheumatoid Arthritis

- Complex, chronic **inflammatory** autoimmune disease with mostly unknown etiology
- Higher risk in women than in men
- Immune cell infiltration in the synovial layer, Progressive joint and bone destruction; **Systemic inflammation**

Arthroses

- · Mechanical and inflammatory components
- Higher risk in women than in men
- Synovial inflammation; Joint and bone destruction; Possible association with systemic inflammation in some patients

Heel Spur

- Discrepancy about gender aspect (younger cohorts female > males)
- Discrepancy inflammation → MRI 8% inflammatory changes

3-

2-

1-

Friedrich-Alexander-Universität Medizinische Fakultät

Outcome differs on type of disease!

tp 3

bone spur

inflamm

synovial

membrar

tp 3

tp 4

tp 4

tp 5

tp 5

Patient Selection? – Gender

Zellzahl 96h nach Aussaat

→ LD-RT results in sex specific differences

OA patients < 50 years: significant better outcome

OA patients < 50 years: significant better outcome

No significant influence on gender

Friedrich-Alexander-Universität Medizinische Fakultät

OA patients < 50 years: significant better outcome

No significant influence on gender

BUT: Significant impact of localization

Uniklinikum Erlangen

Friedrich-Alexander-Universität Medizinische Fakultät

Randomized Controlled Trial> Ann Rheum Dis. 2019 Jan;78(1):83-90.doi: 10.1136/annrheumdis-2018-214104. Epub 2018 Oct 26.

Effectiveness of low-dose radiation therapy on symptoms in patients with knee osteoarthritis: a randomised, double-blinded, sham-controlled trial

Elien A M Mahler ¹, Michiel Jm Minten ², Mathilde M Leseman-Hoogenboom ³, Philip M P Poortmans ³, ⁴, Jan Willem H Leer ³, Simone S Boks ⁵, Frank H J van den Hoogen ⁶, Alfons A den Broeder ², Cornelia H M van den Ende ²

Randomized Controlled Trial> Osteoarthritis Cartilage. 2018 Oct;26(10):1283-1290.doi: 10.1016/j.joca.2018.06.010. Epub 2018 Jul 7.

Lack of beneficial effects of low-dose radiation therapy on hand osteoarthritis symptoms and inflammation: a randomised, blinded, shamcontrolled trial

M J M Minten ¹, M M Leseman-Hoogenboom ², M Kloppenburg ³, M C Kortekaas ⁴, J W Leer ⁵, P M P Poortmans ⁶, F H J van den Hoogen ⁷, A A den Broeder ⁸, C H M van den Ende ⁹

 Response to therapy often only judged on a clinical basis/imaging

 Current study limitations: Applied dosage Patient selection Number of series

Need for biological data as proof of effectiveness!

In vivo irradiation set-up

Deloch et al., Frontiers Immunology, 2018

Local LD-RT with 1x0.5Gy enhances grip strength and reduces $hTNF\alpha$ levels in the serum of $hTNF\alpha$ tg animals

200-

→ Significantly **enhanced grip strength** right after the treatment

 \rightarrow Reduced hTNF α levels in the serum of irradiated animals (d33)

Deloch et al., Frontiers Immunology, 2018; Histological slices in Cooperation with Barbara Happich, Medical Clinic 3; Paw: modified after http://www.informatics.jax.org/cookbook/figures/figure43.shtml 26.11.2020:

Local LD-RT with 1x0.5Gy reduces systemic inflammation in $hTNF\alpha$ tg mice

 \rightarrow Significantly reduced inflammatory areas after 1x 0.5Gy (d33) \rightarrow Systemic reaction!!

Shown are 3 independent experiments with in sum (w/o)=6 and n(local)=5 hTNF-a tg mice. Data is presented as Mean ±SEM for grip strength and Median + IQR; Statistic was calculated using Whitney-U test in comparison to untreated controls (w/o) * p < 0.05).

LD-RT with 1x0.5 Gy results in an anti-inflammatory T cell response (CD4+ \uparrow , CD8+ \downarrow)

Bone marrow

Data shows 2 independent experiments with in sum n(w/o)=5 and n(local)=7 mice; mice were age- and sex-matched. Data is presented as median+IQR and analyzed by two-tailed Mann-Whitney-U test in comparison to mock-treated (w/o) controls (*p<0.05)

Weissmann, Deloch et al. 2022, Frontiers Immunology

LD-RT with 1x0.5 Gy results in an anti-inflammatory T cell response (CD4+ \uparrow , CD8+ \downarrow)

Bone marrow

- Significant increase of rather anti-inflammatory CD4+ T cells
- Significant decrease of rather inflammatory CD8+ T cells

Data shows 2 independent experiments with in sum n(w/o)=5 and n(local)=7 mice; mice were age- and sex-matched. Data is presented as median+IQR and analyzed by two-tailed Mann-Whitney-U test in comparison to mock-treated (w/o) controls (*p<0.05)

Weissmann, Deloch et al. 2022, Frontiers Immunology

LD-RT with 1x0.5 Gy results in an anti-inflammatory T cell response (CD4+ \uparrow , CD8+ \downarrow)

Bone marrow

Rather anti-inflammatory response

treated

(0.5Gy)

protected

Control

Deloch et al., *Frontiers Immunology*, 2018; Histological slices in Cooperation with Barbara Happich, Medical Clinic 3; Paw: modified after http://www.informatics.jax.org/cookbook/figures/figure43.shtml 26.11.2020;

Locally applied LD-RT with 0.5 Gy reduces Bone Loss and Osteoclast Numbers in $hTNF\alpha$ tg mice

→ Significant reduction of erosive areas (d33) as well as a reduction of osteoclast numbers after 1x 0.5Gy

ät Shown are 3 independent experiments with in sum (w/o)=6 and n(local)=5 hTNF-a tg mice. Data is presented as Mean ±SEM for grip strength and Median + IQR; Statistic was calculated using Whitney-U test in comparison to untreated controls (w/o) *p<0.05).</p>

Local and systemic effects of LD-RT with 0.5 Gy

Local irradiation \rightarrow systemic anti-inflammatory effects in inflammation

Local irradiation → local effects in bone

Reduction of erosive areas

Randomized Controlled Trial> Ann Rheum Dis. 2019 Jan;78(1):83-90.doi: 10.1136/annrheumdis-2018-214104. Epub 2018 Oct 26.

Effectiveness of low-dose radiation therapy on symptoms in patients with knee osteoarthritis: a randomised, double-blinded, sham-controlled trial

Elien A M Mahler ¹, Michiel Jm Minten ², Mathilde M Leseman-Hoogenboom ³, Philip M P Poortmans ³ ⁴, Jan Willem H Leer ³, Simone S Boks ⁵, Frank H J van den Hoogen ⁶, Alfons A den Broeder ², Cornelia H M van den Ende ²

Randomized Controlled Trial> Osteoarthritis Cartilage. 2018 Oct;26(10):1283-1290.doi: 10.1016/j.joca.2018.06.010. Epub 2018 Jul 7.

Lack of beneficial effects of low-dose radiation therapy on hand osteoarthritis symptoms and inflammation: a randomised, blinded, shamcontrolled trial

M J M Minten ¹, M M Leseman-Hoogenboom ², M Kloppenburg ³, M C Kortekaas ⁴, J W Leer ⁵, P M P Poortmans ⁶, F H J van den Hoogen ⁷, A A den Broeder ⁸, C H M van den Ende ⁹

Biological data in *in vitro* experiments does not support lack of effectiveness!

Randomized Controlled Trial> Ann Rheum Dis. 2019 Jan;78(1):83-90.doi: 10.1136/annrheumdis-2018-214104. Epub 2018 Oct 26.

Effectiveness of low-dose radiation therapy on symptoms in patients with knee osteoarthritis: a randomised, double-blinded, sham-controlled trial

Elien A M Mahler ¹, Michiel Jm Minten ², Mathilde M Leseman-Hoogenboom ³, Philip M P Poortmans ³ ⁴, Jan Willem H Leer ³, Simone S Boks ⁵, Frank H J van den Hoogen ⁶, Alfons A den Broeder ², Cornelia H M van den Ende ²

Randomized Controlled Trial> Osteoarthritis Cartilage. 2018 Oct;26(10):1283-1290.doi: 10.1016/j.joca.2018.06.010. Epub 2018 Jul 7.

Lack of beneficial effects of low-dose radiation therapy on hand osteoarthritis symptoms and inflammation: a randomised, blinded, shamcontrolled trial

M J M Minten ¹, M M Leseman-Hoogenboom ², M Kloppenburg ³, M C Kortekaas ⁴, J W Leer ⁵, P M P Poortmans ⁶, F H J van den Hoogen ⁷, A A den Broeder ⁸, C H M van den Ende ⁹

Biological data in *in vivo* experiments does not support lack of effectiveness!

Considerations for LD-RT – Research in Clinical and Pre-clinical Settings

Autoimmune disease or mechanical disease?

Inflammatory background?

Gender?

Age?

Localization of affected joints?

Applied dosage?

Summary and Outlook

We already know quite a lot!

Friedrich-Alexander-Universität

Medizinische Fakultät

Summary and Outlook

We already know quite a lot!

(and a lot more than what I have been able to share here is known)

Summary and Outlook

We already know quite a lot!

(and a lot more than what I have been able to share here is known)

BUT

There are still many open questions!

Thank you for your attention!

TOGETHER [BMBF, 02NUK073]

GREWIS-Project [BMBF, 02NUK017G]

GEFÖRDERT VOM

(D)

GREWIS-alpha-Project [BMBF, 02NUK050E]

Bundesministerium

für Bildung

und Forschung

Projektträger Karlsruhe

im Karlsruher Institut für Technologie

FRIEDRICH-ALEXANDER UNIVERSITÄT

ERLANGEN-NÜRNBERG

ΡΤΚΑ

Department Biologie,

Lehrstuhl für Genetik

Falk Nimmerjahn

Department of Radiation Oncology Prof. Rainer Fietkau

Medizinische Fakultät

Universitätsklinikum Erlangen Strahlenklinik Universitätsstraße 27 D-91054 Erlangen www.strahlenklinik.uk-erlangen.de

Lisa.Deloch@uk-erlangen.de Udo.Gaipl@uk-erlangen.de

Radiation Osteoimmunology Group

Radiation Osteoimmunology Group

Lena Winterling Tom Unterleiter

Antonia Völlings Margaux Piltz Teresa Wolff Eva Titova Alexander Urban Felix Weinrich

GOETHE.

UNIVERSITÄT FRANKFURT AM MAIN

Interdisciplinaire de Grenoble

NATIONAL PUBLIC HEALTH CENTER

Institut de Recherche

(IRIG)

