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Value of PET imaging for radiotherapy planning 
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Abstract 

This comprehensive review written by experts in their field gives an overview on the current status of 

incorporating positron emission tomography (PET) into radiation treatment planning. Moreover, it 

highlights ongoing studies for treatment individualisation and per-treatment tumour response 

monitoring for various primary tumours. Novel tracers and image analysis methods are discussed. The 5 
authors believe this contribution to be of crucial value for experts in the field as well as for policy 

makers deciding on the reimbursement of this powerful imaging modality.  
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Introduction 

Positron emission tomography (PET) has found its way into primary disease staging of numerous solid 

tumours and of lymphomas. This has mainly been the contribution of [18F]Fluorodeoxyglucose (18F-

FDG) PET, a glucose analogue which depicts the altered metabolism of malignant tumours as well as 

the physiological metabolism of organs and inflammatory processes. Functional 18F-FDG-PET 5 
combined with anatomical imaging modalities, such as computed tomography (CT) and magnetic 

resonance imaging (MRI), has also altered radiation treatment planning and response assessment, in 

particular in lung cancer, prostate cancer and lymphoma. Moreover, local radiation dose-escalation, 

termed dose-painting, based on increased metabolism has been applied both in theoretical treatment 

planning studies as well as in the context of prospective clinical trials. Finally, tracers depicting 10 

additional tumour characteristics beyond glucose metabolism have become available and their value is 

being assessed. For many years, the incremental value of a close interaction between radiation 

oncologists and nuclear medicine physicians has been highlighted by interdisciplinary studies in 
various tumour entities. Whereas this review is primarily aimed to provide a concise overview over the 

current value of PET in radiation oncology, it might also serve as a stimulus for future collaboration in 15 

both daily practice and scientific trials to further enhance patient care.  

Primary brain tumours 

Different from peripheral oncological diseases, which are predominantly imaged with 18F-FDG-PET, 

non-glucose tracers have shown clear superiority in the workup of tumour lesions in the brain. This is 

due to their high physiological glucose consumption, leading to a low tumour-to-background contrast 20 

and sensitivity for 18F-FDG, as well as to a high glucose uptake of inflammatory cells, which 

particularly hampers the evaluation of unequivocal lesions after radiotherapy [1-3]. Therefore, amino 

acid tracers such as 18F-FET, 11C-MET, 18F-FDOPA or 18F-FACBC are recommended for the assessment 
of gliomas and brain metastases [4, 5], while radiolabelled ligands of the somatostatin receptor type 2 

(SSR2; e.g. 68Ga-DOTATOC, 68Ga-DOTATATE, or 18F-SIFATATE) are used for the imaging of 25 

meningiomas due to their overexpression of the SSR2 [6].  

Radiotherapy planning 

Conventional MRI of the brain is the gold standard to delineate tumour extent in primary brain 

tumours. But yet, due to their infiltrative growth, tumour margins are inadequately assessed by MRI 

alone and histological studies have proven that amino acid PET may be more sensitive to detect the 30 

true tumour extent [7-12]. Therefore, the PET/RANO report [4] proposed that delineation of the so-
called “biological tumour volume” (BTV) using amino acid PET might more accurately disclose the true 

tumour volume and that biologically more active tumour regions may be amenable for dose 

escalation/selective boosting. 

Several trials have shown the value of PET to reduce classical margins for delineation of the clinical 35 

target volume (CTV). For example, a recent study reported that a 1.5cm margin on 18F-FET-PET based 

BTV and MR-based gross tumour volume (GTV) yielded equivalent results according to recurrence 
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patterns compared to classical 2cm margins while significantly reducing dose exposure to healthy 

brain parenchyma [13-16]. 

Concerning the clinical benefit, a small prospective trial suggested that amino acid PET-based re-
irradiation may lead to enhanced survival compared to radiotherapy planning based on conventional 

MRI alone [17]. Currently, a multicentre phase II trial (GLIAA, NOA-10, ARO2013/1) is testing the 5 

hypothesis that 18F-FET-PET-based re-irradiation will be superior to radiotherapy solely based on 

conventional MRI [18]. 

Also with regard to radiotherapy planning of meningiomas, the MRI-based morphologic GTV 

delineation may be insufficient to truly address the entire tumour volume. Particularly for the 

detection of an intra-osseous meningioma infiltration or for the tumour delineation at the skull base, 10 

PET using SSR-ligands has been shown to strongly complement anatomical information from MRI and 

CT [19-21].  
Taken together, PET is a highly valuable tool to complement conventional imaging to improve the 

therapeutic ratio [22]. 

Treatment response and radiation-induced changes 15 

In contrast to 18F-FDG, which is not valuable for the response prediction to radiotherapy [23, 24], 

early 18F-FET or 11C-MET-PET changes are predictors for progression-free survival (PFS) and overall 

survival (OS) [25-29].  

After radiotherapy to primary brain tumours or radiosurgery to metastases [6], MRI, similarly to 18F-

FDG PET, does not offer reliable specificity to differentiate tumour progression from treatment effects 20 
such as pseudo-progression (early event) or radiation necrosis (delayed toxicity) [1-3, 22, 30-32]. 

Contrarily, amino acid PET studies report a high diagnostic accuracy, which can even be increased by 

the evaluation of tracer uptake kinetics, at least for 18F-FET [33-35].  

Head and neck squamous cell carcinomas (HNSCC) 

In recent years, significant improvements in radio(chemo)therapy of head and neck squamous cell 25 

carcinomas (HNSCC) have been achieved.  

The impact of 18F-FDG-PET on target volume (TV) delineation and dose prescription has been studied 

extensively. 18F-FDG-PET improves primary tumour delineation, in particular in advanced stages. 18F-

FDG-PET based TV is smaller than the volume derived by CT or PET, and thus 18F-FDG-PET has a 
significant impact on the radiation dose distribution [36-40]. Compared to CT or MRI, 18F-FDG-PET 30 

demonstrates a higher level of concordance with local tumour extent as identified on histopathology 

[38]. Prospective studies were able to show that the use of 18F-FDG-PET leads to a higher degree of 

conformal radiation dose distribution and to a decreased rate of late side-effects, without 

compromising effects of the irradiation [41, 42]. Leclerc et al. [41] conducted a study in 

oropharyngeal tumours employing TV delineation based on 18F-FDG-PET, which led to decreased 35 

radiation doses to the parotid glands and oral cavity. 
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18F-FDG-PET cannot reliably localize small superficial tumour deposits of the primary tumour or nodal 

micrometastases. This underlines the high relevance of clinical assessment in HNSCC as well as the 

necessity to further improve imaging modalities in the context of radiation treatment planning. 
Tracers imaging tumour cell hypoxia in HNSCC, 18F-MISO, 18F-FAZA, 18F-HX4, have been validated 

against immunohistochemical staining and been applied for patient selection during the course of 5 

radiochemotherapy [RCHT; [43-47]]. Several prospective clinical trials have assessed the value of 18F-

MISO-PET for patient stratification. A recently published prospective clinical phase II study suggests 

that radiation dose may be deescalated from 70 Gy to 30 Gy in oropharyngeal cancer patients with no 

hypoxia on 18F-MISO-PET prior to or with a re-oxygenating tumour during radiation treatment [48]. 
18F-FLT-PET, an imaging biomarker of tumour cell proliferation in HNSCC, also holds high prognostic 10 

value regarding locoregional control [49-51]. Even though, the tracer has not yet found its way into 

routine clinical practice, owing to its complex synthesis.  
The so-called 68Ga- or 18F-FAPI-PET is a novel imaging modality of the Fibroblast Activation Protein 

(FAP), which is highly expressed on the fibroblasts of tumour stroma. Syed et al. [52] have shown 

that a high tumour-to-background-ratio of the FAP-ligand along with significant alteration of TV-15 

delineation in HNSCC patients. The value of 18F-FAPI-PET for a variety of tumours is being evaluated 

in the context of a prospective register (NCT04571086). The value of this novel radiotracer PET for 

radiotherapy planning is to be assessed in prospective clinical studies with relevant oncological 

endpoints. 

Non-small cell lung cancer (NSCLC) 20 

18F-FDG-PET/CT has been recognized as the key imaging method for staging of (non-)small cell lung 
cancer [(N)SCLC] and for detection of disease recurrence. High sensitivities and specificities reported 

for the detection of distant metastases allow for accurate staging and treatment allocation, i.e., local 

therapy with curative intent or systemic therapy for palliation, and high imaging contrast enables 

delineation of the primary tumour and lymph nodes for radiation treatment planning for both tumour 25 

types [53-55].  

According to the present state-of-the-art, an 18F-FDG-PET-CT scan in radiation treatment position 

should indeed be performed within 3 weeks before start of irradiation, even before chemotherapy is 

administered [56]. This scan may also be acquired as 4D-PET/CT for motion management, such as for 
stereotactic body radiotherapy (SBRT). For definition of the GTV containing the primary tumour and 30 

metastatic lymph nodes, institutionally standardized visual contouring is the most widespread method 

and the value of 18F-FDG-PET/MRI subject to ongoing research [55, 57]. Recently, it has been 

confirmed in an international randomized multicentre-trial, that the CTVs (containing GTV and 

additional assumed microscopic spread) can safely be reduced when using 18F-FDG-PET for treatment 

planning in the context of primary RCHT of locally advanced NSCLC [55].  35 

Serial PET scans, combined with CT or MRI, have been investigated in multimodality protocols during 

induction treatment before radiotherapy or during definitive RCHT aiming at either acquiring 
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prognostic information or defining individualized treatment adaptation [58-60]. Semi-quantitative 

metabolic 18F-FDG-PET parameters [i.e. maximum standardised uptake value (SUVmax), metabolic 

tumour volume (MTV)] during RCHT have been observed to significantly correlate with overall and 
progression free survival, and/or local tumour control, even when reassessment is performed early (at 

2 or 3 weeks after the start of radiotherapy) [61-67]. Newer approaches using radiomics and artificial 5 

intelligence are under investigation, but robust independent features, including 4D-PET imaging, were 

not of complementary prognostic or predictive value [56, 68, 69]. 

Beyond 18F-FDG-PET, other PET tracers reflecting tumour characteristics expressed by NSCLC have 

been investigated. Regions of tumour cell hypoxia, which could be imaged using 18F-HX4, 18F-MISO, 
18F-FAZA or 62Cu-ATSM, were found to be smaller than 18F-FDG and to only (partially) overlap with 18F-10 

FDG-PET [70]. Hypoxia markers were found to predict poor outcome in early and advanced stage 

NSCLC patients and might be helpful to guide dose escalation strategies [71, 72]. 18F-FLT-PET 
representing tumour cell proliferation has been used to monitor treatment response during RCHT as 

well as during targeted therapy [73-75]. 

Oesophageal cancer 15 

Current ESMO and NCCN guidelines recommend staging PET/CT using 18F-FDG to identify otherwise 

undetected distant metastases in patients suffering from oesophageal cancer (EC) [76, 77]. 

Specifically, 18F-FDG-PET should be carried out in patients who are candidates for oesophagectomy to 

detect unknown metastatic spread, which may prevent patients from undergoing futile surgery. With 

the exception of cases with limited stage disease (i.e., cT1/2 cN0 M0) for which primary resection is 20 

indicated, the remaining patients are candidates for combined treatment using RCHT with either 
neoadjuvant or definitive intent [76, 77]. However, curatively intended high-dose radiotherapy to the 

thorax could be associated with significant cardiac and pulmonary toxicity. Thus, limiting excessive 

radiation exposure to healthy tissue is of great importance to current research. The status of PET-

based radiotherapy is less clear in EC than in NSCLC, although patients with oesophageal squamous 25 

cell carcinoma share several adverse features with lung cancer patients, especially a high rate of 

cardiovascular comorbidities. In addition, surgical resection of EC is associated with perioperative 

mortality estimated as high as 10%, without an improvement of OS when compared to definitive 

RCHT in two phase-III studies [78, 79]. In contrast to this, survival among patients with potentially 
curable oesophageal or oesophagogastric-junction cancer was improved, when neoadjuvant RCHT 30 

was administered [80]. However, parameters, which may be used to predict response to neoadjuvant 

or definitive RCHT, are urgently warranted for an individually tailored treatment.  

Currently, there is no gold standard for delineation of radiation target volumes in EC. Nevertheless, 

several publications have demonstrated that PET imaging may lead to improvement in the efficacy of 

radiotherapy of EC. A large Dutch delineation study showed that 18F-FDG-PET influenced the 35 

delineated volume in the majority of benchmark cases [81]. Additionally, results from a small 

prospective clinical trial suggest a significant benefit of additional PET imaging, with 6 out of 20 
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patients enrolled receiving subsequent modifications to their radiation treatment following 18F-FDG-

PET/CT when compared to patients receiving conventional imaging [82]. A recently published 

delineation proposal of neoadjuvant target volumes in EC is also based on 18F-FDG-PET imaging, 
optimally acquired in treatment position [83]. Furthermore, preliminary retrospective data suggest 

that inclusion of PET into treatment planning potentially improves survival compared to conventional 5 

imaging [84].  

Besides contributing to improved biological tumour delineation, PET parameters are additionally 

associated with favourable outcomes in neoadjuvant and definitive treatment settings. This holds true 

for baseline PET-parameters but even more so for interim PET parameters [85-89]. Novel PET-

parameters (e.g. standard uptake ratio, SUV) obtained at interim showed very encouraging results in 10 

the selection of optimal candidates for organ preservation [90]. Moreover, the use of 18F-FDG-PET/CT 

for restaging following neoadjuvant RCHT enables detection of distant interval metastases in up to 9% 
of cases [91, 92]. Recent clinical trials have also indicated that response assessment by PET during 

chemotherapy can be used to escalate local therapies in non-responders [93].  Collectively, a large 

meta-analysis found that restaging by 18F-FDG-PET/CT may considerably impact on treatment 15 

decision-making [91]. Nevertheless, the clinical benefit of 18F-FDG-PET/CT for assessing response to 

definitive radiochemotherapy or neoadjuvant treatment before surgery remains controversial. 

Following German national guidelines, interim PET imaging is not routinely recommended [94]. 

Therefore, the further validation of the role and promising PET parameters with an emphasis on 

objective quantitative parameters for response assessment through prospective, multicentre studies is 20 
of utmost importance to further optimize personalized treatment approaches.  

Rectal cancer 

PET in primary staging 

Regarding primary tumour staging, MRI is the gold standard and established in all international 

guidelines. MRI allows a reliable assessment of infiltration depth, mesorectal fascia involvement or 25 

infiltration of adjacent organs owing to its excellent soft tissue contrast [95]. In this aspect, MRI is 

superior to 18F-FDG-PET/CT imaging. Regarding nodal status, no single modality achieves high 

accuracy for the prediction of lymph node involvement. For MRI staging, morphological features such 

as shape and signal intensity outperform size [96]. Thus far, no study has compared MRI with 18F-
FDG-PET/CT regarding nodal status. There are a number of studies showing partial superiority of 18F-30 

FDG-PET imaging compared with conventional imaging. Kwak et al. [97] analysed 473 patients and 

found a sensitivity of 66% with a specificity of 60% using 18F-FDG-PET/CT. On CT, there was a 

significantly lower specificity of 29% with slightly higher sensitivity of 87%. Overall, this resulted in a 

non-significantly different accuracy of 63% for 18F-FDG-PET/CT and of 59% for CT only [97]. No 

difference was documented for the detection rate of lymph node metastases. In another study, 35 

univariate and multivariate analysis demonstrated that quantitative parameters obtained from 18F-
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FDG-PET [metabolic tumour volume (MTV), maximum SUV (SUVmax)] were independent predictors of 

the presence of lymph node metastases [98].  

PET for radiation planning 
The ‘classic’ target volume for locally advanced rectal cancer in the neoadjuvant setting includes the 

entire mesorectum in addition to the primary tumour, and thus also the rectum up to the level of the 5 

promontory. Pelvic lymphatics are included depending on the clinical scenario (S3 guideline Colorectal 

Carcinoma [99]). Usually, the entire target volume receives a uniform dose, such that a highly precise 

delineation of the primary tumour is not of clinical relevance. However, clinical trials are currently 

investigating whether dose escalation to the primary tumour can lead to an increase in complete 

remission rates and thus allow for an organ-preserving approach in a larger number of patients [100]. 10 

Here, a precise definition of the primary tumour is relevant to apply the highest possible dose to the 

primary tumour while sufficiently sparing normal tissue. Several studies have compared MRI and 18F-
FDG-PET-based primary tumour definition. The 18F-FDG-PET-based primary tumour delineation 

consistently resulted in a smaller tumour volume compared to the MRI-based definition [101, 102]. 

However, it should be taken into account that, as described above, an excellent correlation with the 15 

actual tumour extent has been established for MRI. For 18F-FDG-PET-based primary tumour definition, 

these data are currently lacking. Furthermore, it should be considered that the rectum shows an 

extremely variable anatomy and a tumour volume generated based on "offline" image data requires a 

large safety margin to be irradiated. Overall, the utility of 18F-FDG-PET-CT in target volume definition 

in rectal cancer seems limited. 20 
PET for response assessment 

The prediction of a clinical complete remission is one of the major challenges in establishing organ 

preservation strategies, as neither endoscopic assessment nor MRI after therapy have shown reliable 

sensitivity to date [103]. A promising approach is to incorporate early changes in functional, 

quantifiable imaging data, such as 18F-FDG-PET/CT [104]. In a prospective study comparing 25 

quantitative imaging methods with molecular markers in terms of predictive power for complete 

remission, imaging methods including 18F-FDG-PET/CT were shown to have the highest sensitivity of 

approximately 80% [105]. 

Anal cancer 

The standard of care of non-metastatic anal cancer is definitive, organ-preserving concurrent RCHT 30 

[106, 107]. Due to usually high FDG-avidity of the primary tumour, locoregional lymph node and 

distant metastases, 18F-FDG-PET/CT may provide useful diagnostic information for RCHT planning 

[108-113]. Furthermore, PET-derived metabolic biomarkers including pre-treatment SUVmax and MTV 

have shown prognostic significance in terms of OS, PFS and event-free survival (EFS) [108, 114, 115]. 
18F-FDG-PET/CT can be helpful in identifying the primary tumour, but both the spatial resolution of 35 

PET and physiologic anal uptake limit accurate T-staging [116, 117]. Thus, MRI and transanal 

endoscopic ultrasound remain the clinical standard for T-staging [118-120]. Although data on the use 
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of 18F-FDG-PET/MRI are limited, recent data indicate that PET/MR provides a more precise assessment 

of the local extent of rectal cancers in evaluating cancer length, nodal (N) status, and external 

sphincter involvement [121]. There is good agreement between 18F-FDG-PET- and MRI-based GTVs 
[122]. Accurate N-staging is crucial for dose prescription and target volume delineation concerning 

(elective) lymph node irradiation by consensus contouring guidelines and definition of boost volumes 5 

(simultaneously integrated or sequential) for involved lymph node disease [123, 124]. A particular 

strength of 18F-FDG-PET/CT is the additional detection of small lymph node metastases in 

unsuspected pelvic and inguinal lymph nodes, and the detection of occult distant metastases. 

Several studies focused on the impact of 18F-FDG-PET/CT for radiation treatment planning and target 

volume definition. Two meta-analyses focused on disease staging with a particular focus on radiation 10 

treatment planning: 18F-FDG-PET/CT led to upstaging in 5-38%, and to downstaging in 8-27% of 

patients; the identification of lymph node metastases lead to treatment plan adaptions in 12.5%-59% 
of patients [117, 125]. Furthermore, recently published data reported that up to 20-26% of 18F-FDG-

PET positive lymph nodes were located outside the target volume of common guidelines for elective 

lymph node irradiation and would have been missed without the 18F-FDG-PET/CT-derived information 15 

[126]. 

Furthermore, 18F-FDG-PET/CT – performed 12 weeks after completion of RCHT – may be useful to 

identify patients with insufficient metabolic response of the primary tumour predicting the need for 

early salvage therapy [127, 128]. A metabolic partial response was predictive for a significantly 

decreased 2-year PFS compared with metabolic complete response [22-71% versus 95% [128, 129]]. 20 
However, as reported in the meta-analysis of Jones et al. [125], 18F-FDG-PET/CT performed too early 

during follow-up occasionally prompted unnecessary resection. Therefore, and since according to 

current guidelines the final response of anal cancer should be assessed as late as 26 weeks after 

RCHT, the timing of an 18F-FDG-PET scan during follow up should be late and any consequences 

should be drawn with caution.  25 

Cervical cancer 

External beam RCHT followed by 3D-planned MRI-based brachytherapy maximizes tumour doses for 

excellent local control rates and is thus the standard of care [130]. Even though, lymph node 

metastases are the most important prognostic factor in cervical cancer patients, which is not 
considered in the current FIGO classification. This results in under- and overtreatment of patients and 30 

an unacceptably high rate of postoperative RCHT [130, 131]. CT and MRI have demonstrated 

disappointingly low accuracy rates in primary lymph node staging. Consequently, in some countries 
18F-FDG-PET/CT has been increasingly used to overcome the limitations in accurate lymph node 

staging. Since 18F-FDG-PET/CT suffers from a high rate of false negative readings of up to 20%, 18F-

FDG-PET/CT cannot replace laparoscopic staging [132, 133]. Thus, laparoscopic staging is widely 35 

applied leading to upstaging in >30% of locally advanced cervical cancer patients and allowing for 

treatment triage (radical hysterectomy versus definitive RCHT). Recently, the randomized trial Uterus-
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11 has shown that laparoscopic staging did not only avoid under- or overtreatment, but had an impact 

on disease-free survival and cancer-specific survival, respectively, without increased toxicity rates 

[134]. Laparoscopic staging therefore remains the gold standard for FIGO stage IIB and >IIB patients 
[134-136].  

The implications of undertreating patients with false negative paraaortic disease is disastrous, given 5 

the fact that the survival rate for patients with histologically positive paraaortic lymph nodes treated 

with extended-field radiation therapy is as high as 50% [137]. A prospective trial evaluated the use of 

laparoscopic staging after (false) negative 18F-FDG-PET/CT and showed significantly superior 

oncological outcomes for patients with lymph node metastases < 5mm vs. > 5mm after surgical 

staging and RCHT [138]. The shortcoming of the above mentioned Uterus-11 trial [134] is that 18F-10 

FDG-PET/CT was not used in that study. The idea of combining the validation of 18F-FDG-PET/CT and 

laparoscopic staging has been discussed by the LilACS study group. The study aimed at randomizing 
patients with 18F-FDG-PET/CT positive pelvic, but negative para-aortic lymph nodes to either 

laparoscopic lymph node dissection or pelvic RCHT [139]. Unfortunately, the trial was not able to 

recruit a sufficient number of patients and was subsequently closed. This approach should be the aim 15 

of a future multicentre trial. 
18F-FDG-PET/CT-based therapy response assessment allows for a reliable prediction of overall survival 

in patients with locally advanced cervical cancer treated with concomitant RCHT [140]. This should be 

used within clinical trials to tailor adjuvant treatment, e.g. maintenance treatment with 

immunotherapy in case of persistent FDG uptake. In the setting of neoadjuvant RCHT, data showed 20 
that early changes in metabolic 18F-FDG-PET parameters might allow for differentiation of 

histopathological response of the primary tumour [141]. However, negative results of two randomized 

trials have now questioned the role of neoadjuvant chemotherapy at all [142, 143]. 18F-FDG-PET/CT 

has a high sensitivity and specificity in the detection of distant metastases, which may lead to a 

change of the treatment intent [curative versus palliative [144]]. However, 18F-FDG-PET uptake 25 

depends on the histological subtype being highest in squamous cell carcinoma, whereas e.g. mucinous 

adenocarcinoma often show only faint 18F-FDG uptake resulting in a limited sensitivity in these 

subtypes [145]. 
Regarding restaging of cervical cancer, a recently published meta-analysis showed a pooled sensitivity 

of 0.97 (0.95-0.99) for 18F-FDG-PET/CT. 57% of the therapeutic approaches were modified due to the 30 

results of 18F-FDG-PET/CT [146]. At present, according to national guidelines, in the setting of 

recurrent cervical cancer, 18F-FDG-PET/CT might be reserved for individual patient cases for tailored 

treatment [147]. In the follow-up, 18F-FDG-PET/CT remains a helpful tool after RCHT or radical 

hysterectomy, even in patients with increasing tumour markers and negative MRI findings.  

In the future, the use of hybrid PET/MRI protocols could contribute to improve imaging of cervical 35 

cancer patients, and the use of alternative PET radiopharmaceuticals, e.g., 68Ga-FAPI is under 
investigation [148]. 

Prostate cancer 
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PET in primary staging 

Accurate detection of intra- and extraprostatic tumour foci by imaging is of high clinical relevance for 

radiation treatment planning in patients with primary and recurrent prostate cancer.  A large of 
number studies performed during the last 5 years has shown that PET imaging with radiolabelled 

small molecule inhibitors of the glutamate carboxypeptidase PSMA (prostate specific membrane 5 

antigen) allows for more sensitive and specific detection of prostate cancer lesions than other imaging 

techniques. Several radiolabelled PSMA inhibitors have been developed but most of the clinical so far 

has been obtained with the ligand 68Ga-PSMA-11 [149-151]. This radiotracer has recently been 

approved by the FDA for imaging of primary and recurrent prostate cancer. Several 18F-labelled PSMA 

inhibitors are being investigated in prospective clinical trials; these tracers can be produced in larger 10 

batch sizes and have better physical properties for PET imaging. Furthermore, some of them show 

less urinary excretion, which facilitates detection of primary tumours and local recurrences. The 
diagnostic performance of these 18F-labelled tracers is overall probably similar or superior to 68Ga-

PSMA-11, but head-to-head comparisons are so far limited [149-152]. Therefore, the results of these 

various agents are summarized under the name ‘PSMA-PET/CT’ in the following text. 15 

In the primary setting, PSMA-PET/CT imaging can be applied for initial staging in patients with high-

risk profiles [153]. A prospective phase III study (proPSMA) showed that the application of PSMA-

PET/CT has relevant impact on patient management since the accuracy for lymph node and bone 

metastases is higher as compared to conventional imaging [154]. In particular the performance of 

PSMA-PET/CT often leads to changes in TNM-staging with subsequent alterations in radiation 20 
treatment planning. Several retrospective analyses have also addressed this issue. Dewes et al. [155] 

reported on a change in TNM stage in 8 of 15 patients or modifications of CTVs and changes in 

prescribed dose in 5 and 12 patients, respectively. In another retrospective analysis, PSMA-PET/CT 

was shown to have a major impact on final radiotherapy planning in approximately one-third of the 

patients, especially when no elective radiation to the pelvic lymphatic drainage system was initially 25 

planned [156]. Recently, another phase III trial has been started which randomizes patients with 

unfavourable, intermediate, and high risk profiles to a group with and a group without PSMA-PET for 

definitive radiotherapy planning (NCT04457245). 
In addition, in prostate cancer a clear dose-response relationship could be described. The prospective 

multicentre phase III study ‘FLAME’ demonstrated that dose escalation to intraprostatic tumour lesions 30 

defined by MRI imaging resulted in a significant improvement in recurrence-free survival [157]. 

However, it can be assumed that the intraprostatic tumour mass determined on the basis of PSMA-

PET information can be contoured with a higher sensitivity [158-161]. Zamboglou et al. [162] 

reported on the feasibility of dose escalation to intraprostatic lesions defined by 68Ga-PSMA to 95 Gy in 

10 patients. Thus, a multicentre phase II study from Germany is currently investigating focal dose 35 

escalation to intraprostatic tumour volumes defined by combined PSMA-PET/CT and MRI imaging 
(HypoFocal; DRKS00017570). Of note, PET/CT imaging for prostate cancer in Germany almost is now 

exclusively performed with PSMA-ligands and Choline-derivates have been completely replaced. Phase 

III studies are already underway to investigate whether the use of PET/CT imaging and the associated 
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individualization of the therapeutic approach leads to the expected improvement in oncological 

outcome. 

Salvage radiotherapy in recurrent prostate cancer  
Before the introduction of PSMA-PET/CT, usually no extensive imaging workup was indicated in low-

level biochemical recurrence (increasing PSA out of the undetectable range) after radical 5 

prostatectomy (RP) or a persisting PSA after RP before salvage radiotherapy (SRT, start of RT at a 

PSA-level <0.5 ng/ml) due to the known limited accuracy of conventional staging with CT and bone 

scintigraphy [163-165]. An exception is MRI with dynamic contrast enhanced MRI (DCE-MRI) which 

shows excellent results for identifying small areas of local recurrence, however has not been widely 

used in clinical routine up to now [166, 167]. The situation has changed substantially with PSMA-10 

specific PET radiotracers, which show superior sensitivity and specificity for detecting recurrent 

prostate cancer compared with conventional imaging and also other compared to other radiotracers 
such as choline-based substances or fluciclovine [168-170]. PSMA PET-CT appears to be particularly 

effective at low PSA levels after radical prostatectomy below 0.5 ng/ml when SRT to the prostate bed 

would typically be initiated and may even detect recurrent disease in 33% to 42% of patients at PSA 15 

levels <0.2 ng/ mL [171, 172]. Most studies used 68Ga-labelled PSMA compounds, however, these are 

more and more replaced by 18F-labelled PSMA tracers, as these can be produced in higher quantities 

and also mostly have less renal excretion, thus showing superior image quality adjacent to the bladder 

for identification of local recurrences [173]. Recent reports also suggest that PET/MR might be 

advantageous in this respect and superior to PET/CT for detection of local recurrences [174, 175]. 20 
Through improved characterization of recurrent prostate cancer, PSMA-targeted PET/CT has shown 

significant impact on management decisions, such as by identifying men with recurrence confined to 

the prostate or pelvic nodes [176, 177]. At a PSA value of less than 0.5 ng/mL, PSMA PET/CT detects 

lymph node metastases in approximately 20% of patients [178]. Thus, PSMA PET/CT in the setting of 

biochemical recurrence with low PSA values changes patient management in nearly 50% of the 25 

patients according to a review of 45 studies evaluating the use of PSMA PET/CT in the setting of 

biochemical recurrence [178].  

Of special relevance in this respect is the identification of distant metastases, mostly to the bone, 
which can even occur in the group with low-level biochemical recurrence (10% at a PSA level 

<0.5 ng/mL) and in case of oligometastatic disease might be irradiated as well or in more extensive 30 

metastatic disease might change the original treatment concept completely [179]. Moreover, adaption 

of the radiation target volume was noted such as extension of the field to include suspicious lymph 

nodes or in case of atypically localized recurrences at the border of the standard target volume [180-

182].  The success of PSMA-PET/CT has also led to the inclusion in the German S3 guideline for 

diagnosis and treatment of prostate cancer as an option for imaging in case of low-level biochemical 35 

recurrence after RP before SRT [183]. However, it has to be stressed that in case of a negative PSMA-
PET result, SRT shall not be delayed as ‘blind’ prostate SRT remains an effective treatment. Moreover, 

while one expects PSMA-PET guided SRT with potentially also a dose-escalated simultaneous 

integrated boost directed to the PSMA-positive local recurrence to have a positive impact on the 
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course of the disease, e.g., improved success rates concerning PSA-response, the ultimate clinical 

value and influence on progression survival or even overall survival is not yet known. This will be 

evaluated in ongoing prospective randomized studies (Clinicaltrials.gov NCT01666808, NCT03762759, 
NCT03525288) including a phase III study (NCT03582774) in the setting of post-RP biochemical 

failure, which compare the current standard of care (salvage RT to prostatic fossa) with 5 

PSMA/fuciclovine PET-CT-guided SRT.  

Malignant lymphoma 
18F-FDG-PET has significantly changed the treatment of malignant lymphomas (mL) in recent years. 

This is especially true for radiation oncology.  

PET in the context of staging 10 

In the case of exclusive radiation, e.g. in follicular lymphoma (FL) or lymphocyte-predominant 

Hodgkin's lymphoma (HL), 18F-FDG-PET plays a crucial role. Staging must be performed as accurately 

as possible to ensure, first, that early stage is present and, second, that all affected lymph nodes are 
included in the target volume. The use of 18F-FDG-PET has led to systematic up-staging in early 

stages [184-186], at the same time showing improved PFS for early stage FL [187, 188]. Also in the 15 

context of combined treatment with chemotherapy followed by consolidative radiotherapy according 

to the involved site (ISRT) definition, PET helps to define a correct and adequate target volume size 

[189]. 

The benefits of PET in the context of target volume definition 
18F-FDG-PET has played a critical role in early stage mL radiation treatment planning. CT-20 

morphologically normal lymph nodes can be included in the target volume when positive on 18F-FDG-
PET [190-193]. This can reduce recurrences due to geographical misses [191, 194, 195]. Also, in 

advanced stages, extranodal involvement can be better detected, implementing 18F-FDG-PET in the 

ILROG guidelines for treatment of mL [196-198]. Whenever 18F-FDG-PET is performed as part of 

staging, the patient positioning is usually not identical to that for radiation therapy. Thus, 18F-FDG-PET 25 

and the planning CT scans need to be fused for the treatment planning purposes. Since spatial 

discrepancy in the area of affected lymphomas may arise, the ISRT definition is applied, which takes 

into account a greater uncertainty in positioning [197]. Whenever the 18F-FDG-PET scan is performed 

in the setting of a treatment planning PET/CT, the imprecision of the CTV definition is very small and 
consequently, the involved node (INRT) definition can be used [199]. 30 

The utility of PET for therapy stratification in the combined modality setting 

Based on the Lugano criteria, PET is used as part of the re-staging of mL [200]. Assessment is based 

on a 5-point scale, the Deauville Score (DS), which evaluates lymphoma activity in comparison with 

the mediastinum and liver. In various studies, two main treatment stratification approaches have been 

and are being pursued; (1) whether a negative progression PET can de-escalate therapy, e.g., by 35 

omitting radiotherapy or reducing chemotherapy, and (2), whether therapy escalation can be 

performed by a positive interim PET. Therefore, in particular a DS3 score is sometimes evaluated 
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differently in escalation and de-escalation studies [201, 202]. The statement of a metabolic complete 

remission after chemotherapy has prognostically favourable significance for patients with both HL and 

diffuse large-cell B-NHL (DLBCL). However, local recurrences still occur in some cases when 
radiotherapy has not been given because of negative PET after chemotherapy. This is particularly 

confirmed in a number of studies for early stages [201-205]. The data on 18F-FDG-PET-guided 5 

radiotherapy in HL is now secure for intermediate and advanced stages. In DLBCL, the results of the 

pivotal trials are not yet conclusive. However, 18F-FDG-PET-guided radiotherapy indication in the 

advanced stages seems to be established here as well. 

Future prospects 

PET/CT, PET/MRI and radiomics in radiotherapy planning 10 

Multimodal 18F-FDG-PET/CT and PET/MRI data have been shown by various studies to improve RT 

planning in different aspects, such as better patient selection and precision in target delineation [55, 

190, 206-212]. Inclusion of PET/CT or PET/MRI data into radiation dose planning requires dedicated 
acquisition protocols [213-217] to ensure reproducible manual or automatic contouring of tumour 

regions [207, 218-220]. 15 

Furthermore, PET/CT and PET/MRI data can be used for automated high-throughput radiomics 

analyses [221, 222]. In such studies, standardised quantitative image characteristics are extracted to 

develop models that support the diagnosis of tumour diseases, the prediction of therapy adaptation, 

or the prognosis of therapy response, using modern methods of artificial intelligence [223-228]. For 

applicability in clinical practice, efforts on a standardised and reproducible radiomics workflow are 20 

decisive [229-234]. To further improve reliability, imaging characteristics may be combined with 
molecular and clinical information in a multi-omics approach [235].  

New PET tracers 

While amino-acid-based PET tracers, somatostatin receptor specific PET tracers and PSMA ligands are 

already used for radiation therapy planning in gliomas, meningiomas and prostate cancer [see above 25 

and [236]], radiotracers showing specific aspects of tumour biology such as proliferative activity and 

cancer-associated fibroblasts might be of relevance for biological target definition. The most 

commonly used radiopharmaceutical for imaging cell proliferation is 18F-FLT [237]. Contrary to 18F-

FDG, 18F-FLT-PET identifies the proliferating cell compartment within the GTV and could potentially be 
used to define tumour sub-volumes with high proliferative activity. Escalation of radiation dose within 30 

these regions could improve the tumour control probability by diminishing accelerated repopulation 

[50]. Several investigators evaluated the effectiveness of 18F-FLT-PET for radiotherapy planning in 

oropharyngeal tumours, oesophageal carcinoma, and NSCLC but it has not found its way into clinical 

routine [238, 239]. In recent years, more promising is a novel group of tracers targeting the fibroblast 

activation protein on the so-called cancer-associated fibroblasts (CAFs), such as 68Ga-FAPI [240]. Due 35 

to its high tumour to background contrast in many malignancies, which often is superior to that in 18F-

FDG, there is also rising interest in the use of FAP-specific PET for radiation treatment planning [241, 
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242]. Promising first preliminary results in HNSCC with 68Ga-FAPI-PET suggest it might help in 

accurately assessing the extent of tumour spread prior to treatment start to reduce the area exposed 

to radiation and thereby reduce toxicities [242]. An optimized radiation therapy planning and 
reduction of the treatment field is also reported in lung cancer where differentiating tumour from 

normal tissue is often difficult with 18F-FDG in particular when the lung is affected by inflammatory 5 

conditions or chronic obstructive pulmonary disease [243]. However, large prospective trials are 

necessary to define the future role of 68Ga-FAPI-PET for radiation therapy planning [244]. 

There has also been significant progress in imaging with radiolabelled antibodies and antibody 

fragments. Labelling of these proteins with 89Zr via the chelator DFO is a routine process, which only 

rarely affects their ligand binding properties. Clinical studies have shown that radiolabelled antibodies 10 

allow for imaging of a variety of important targets including, for example, HER2, CA19-9, and PD-L1 

[245-247]. Using these antibodies PET imaging may therefore reveal biological changes during 
radiotherapy, e.g. the up- or down-regulation of PD-L1. Broader clinical use of radiolabelled antibodies 

is currently limited by the significantly higher radiation dose from the long-lived isotope 89Zr. However, 

PET/CT systems with several fold higher sensitivity than existing scanners are currently entering the 15 

clinic. These systems allow imaging with radiolabelled antibodies at radiation doses similar to 18F-FDG-

PET/CT [248]. 

PET-based dose painting 

Imaging biomarkers measured with hypoxia tracers such as 18F-MISO and 18F-FAZA but also with 

routing 18F-FDG have been shown to be prognostic for outcome after radiotherapy [43, 46, 206, 249-20 
254]. Consequently, radiation treatment adaptation by means of PET-guided dose escalation or de-

escalation to account for individual radiation sensitivities in tumour sub-regions, so-called dose 

painting, seems attractive and might enable for increased tumour control rates and/or reduced toxicity 

[48, 249, 255]. Final results from randomized studies are necessary to estimate the full potential of 

PET-based dose painting RT [48, 249, 256, 257].  25 

Reimbursement 

Unfortunately, only few of the presented, internationally accepted indications for PET/CT are currently 

recognized and reimbursed by German statutory health insurances in the outpatient setting. A more 
thorough discussion of this delicate issue can be found in [258]. However, the authors of this article 

are convinced that this technique is a very powerful tool for optimal patient care and therefore hope 30 

for future adjustment of reimbursement regulations to allow for excellent patient care in accordance 

with (international) recommendations and guidelines. 

Conclusions 

In conclusion, PET/CT is an established tool for radiation therapy of various tumour entities in 

different clinical scenarios. Large multi-centre, prospective trails are needed to further enhance 35 

evidence for improved oncological outcomes due to incorporation of this imaging technique into 

patient management.   
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