UK SH

Was wird uns zukünftig beschäftigen?

Stereotactic Arrythmia Radioablation (STAR) oder Herz-Radiochirurgie für Ventrikuläre Tachykardie

Dr. Oliver Blanck

Wissenschaftlicher Mitarbeiter UKSH, Campus Kiel, Klinik für Strahlentherapie

Leiter Operatives Geschäft, Medizinphysik, Forschung und Entwicklung Saphir Radiochirurgie (Güstrow, Frankfurt am Main, Kiel)

Christian-Albrechts-Universität zu Kiel

Medizinische Fakultät

Historical Review and Disclosures

The **inventor of STAR was Prof. Thomas Fogarty** in 2001. In 2006, he founded the company **CyberHeart**, which evaluated STAR in animal models. CyberHeart's focused on the treatment of **atrial fibrillation**.

In 2010 CyberHeart was discontinued because it ran out of initial funding. CyberHeart was bought by Varian in 2018.

Disclosures: Aside from having been employed by CyberHeart from 2008-2010 I have *none*.

Procedural Overview for STAR

A Review of Cardiac Radioablation (CR) for Arrhythmias: Procedures, Technology, and Future **Opportunities**

Suzanne Lydiard, PGDip,*^{,†} Oliver Blanck, PhD,[‡] Geoffrey Hugo, PhD,[§] Ricky O'Brien, PhD,* and Paul Keall, PhD*

Critical Review

Christian-Albrechts-Universität zu Kiel

Medizinische Fakultät

STereotactic Arrhythmia Radioablation (STAR)

- 1) Dose-Response Relationship
- 2) Target Definition and Conversion
- 3) Motion Management
- 4) Treatment Planning
- 5) Treatment

Homogeneous 15-40 Gy (2.5 Gy steps), randomized, double blinded

Animal Model	Porcine / Göttingen Mini Pig (n = 13, 40-60kg)						
Dose Finding	Pathology only 0 Gy / 15 Gy (died) 17.5 Gy 20 Gy 25 Gy	<i>Full Data</i> 22.5 Gy 27.5 Gy 30 Gy 32.5 Gy	35 Gy 37.5 Gy (died at 1 month) 40 Gy				
Follow-Up Period	6 months for all pigs						

Minimal electrophysiological changes with 22.5 Gy

Decreased electrophysiological signals with 32.5 Gy

No electrophysiological signals and block with 40 Gy

- → Regular vein structure of control animal
- → Mild fibrosis with intermediate dose (25Gy)
- → Moderate fibrosis with intermediate to high dose (30Gy)
- → Confluent fibrosis with high dose (32.5Gy)
- -> Transmural, circumferential fibrosis with stenosis (40Gy)

b

Target planning from posterior view

SCIENTIFIC REPORTS

OPEN Feasibility Study on Cardiac Arrhythmia Ablation Using High-**Energy Heavy Ion Beams**

Received: 08 August 2016 Accepted: 09 November 2016 Published: 20 December 2016

Received: 12 October 2018

Published online: 21 March 2019

H. Immo Lehmann^{1,*}, Christian Graeff^{2,*}, Palma Simoniello², Anna Constantinescu², Mitsuru Takami¹, Patrick Lugenbiel³, Daniel Richter^{2,4}, Anna Eichhorn², Matthias Prall², Robert Kaderka², Fine Fiedler⁵, Stephan Helmbrecht⁵, Claudia Fournier², Nadine Erbeldinger², Ann-Kathrin Rahm³, Rasmus Rivinius³, Dierk Thomas³, Hugo A. Katus³, Susan B. Johnson², Kay D. Parker², Jürgen Debus⁶, Samuel J. Asirvatham¹, Christoph Bert^{2,4}, Marco Durante^{2,7} & Douglas L. Packer¹

SCIENTIFIC REPORTS

OPEN Biological Cardiac Tissue Effects of High-Energy Heavy lons -Investigation for Myocardial Ablation Accepted: 26 February 2019

Felicitas Rapp 1, Palma Simoniello 2, Julia Wiedemann1, Karola Bahrami 1, Valeria Grünebaum 1, Svetlana Ktitareva 1, Marco Durante 1,3, P. Lugenbiel 4,5, D. Thomas^{4,5,6}, H. Immo Lehmann^{07,8}, Douglas L. Packer⁸, Christian Graeff¹ Claudia Fournier

scientific reports

Check for updates

OPEN Feasibility study on stereotactic radiotherapy for total pulmonary vein isolation in a canine model

Ji Hyun Chang¹, Myung-Jin Cha^{2,3^{III}}, Jeong-Wook Seo⁴, Hak Jae Kim^{1,5,6}, So-Yeon Park^{7,8}, Byoung Hyuck Kim⁹, Euijae Lee¹⁰, Moo-kang Kim³, Hye-sun Yoon³ & Seil Oh^{3,11}

ORIGINAL RESEARCH

Early Changes in Rat Heart After High-Dose Irradiation: Implications for Antiarrhythmic Effects of Cardiac Radioablation

Myung-Jin Cha (0), MD, PhD; Jeong-Wook Seo (0), MD, PhD; Hak Jae Kim, MD, PhD; Moo-kang Kim, BS; Hve-sun Yoon, BS: Seong Won Jo: Seil Oh (0), MD, PhD': Ji Hvun Chang (0), MD, PhD'

→ After 4-6 week we see fibrosis and cell death with doses > 30 Gy

Radiation Biology Effects from STAR

STereotactic Arrhythmia Radioablation (STAR)

- Cardiovascular diseases are most common cause of death
- Ventricular Tachycardia (VT) is associated with certain cardiovascular diseases and the main cause for sudden cardiac death

Therapy options

- Implantation of an ICD
- Antiarrhythmic medications
- Catheter ablation

However, the recurrence rates are as high at 50% with limited options for treatment: STAR

Jumeau R, Ozsahin M, Schwitter J, et al. Stereotactic Radiotherapy for the Management of Refractory Ventricular Tachycardia: Promise and Future Directions. Front Cardiovasc Med. 2020;7:108.

Why did 25 Gy work for VT?

Noninvasive Cardiac Radiation for Ablation of Ventricular Tachycardia

 Phillip S. Cuculich, M.D., Matthew R. Schill, M.D., Rojano Kashani, Ph.D., Sasa Mutic, Ph.D., Adam Lang, M.D., Daniel Cooper, M.D.,
Mitchell Faddis, M.D., Ph.D., Marye Gleva, M.D., Amit Noheria, M.B., B.S.,
Timothy W. Smith, M.D., D.Phil., Dennis Hallahan, M.D., Yoram Rudy, Ph.D., and Clifford G. Robinson, M.D.

First Phase I / II Studies

Circulation

ORIGINAL RESEARCH ARTICLE

Phase I/II Trial of Electrophysiology-Guided Noninvasive Cardiac Radioablation for Ventricular Tachycardia

Editorial see p XXX

BACKGROUND: Case studies have suggested the efficacy of catheter-free, electrophysiology-guided noninvasive cardiac radioablation for ventricular tachycardia (VT) using stereotactic body radiation therapy, although prospective data are lacking.

METHODS: We conducted a prospective phase *VII* trial of noninvasive cardiac radioablation in adults with treatment-refractory episodes of VT or cardiomyopathy related to premature ventricular contractions (PVCs). Arrhythmogenic scar regions were targeted by combining noninvasive anatomic and electric cardiac imaging with a standard stereotactic body radiation therapy workflow followed by delivery of a single fraction of 25 Gy to the target. The primary safety end point was treatment-related serious adverse events in the first 90 days. The primary efficacy end point was any reduction in VT episodes (tracked by indwelling implantable cardioverter defibrillators) or any reduction in PVC burden (as measured by a 24-hour Holter monitor) comparing the 6 months before and after treatment (with a 6-week blanking window after treatment). Health-related quality of life was assessed using the Short Form-36 questionnaire.

RESULTS: Nineteen patients were enrolled (17 for VT, 2 for PVC cardiomyopathy). Median noninvasive ablation time was 15.3 minutes (range, 5.4–32.3). In the first 90 days, 2/19 patients (10.5%) developed a treatment-related serious adverse event. The median number of VT episodes was reduced from 119 (range, 4–292) to 3 (range, 0–31; *R*<0.001). Reduction was observed for both implantable cardioverter defibrillator shocks and antitachycardia pacing. VT episodes or PVC burden were reduced in 17/18 evaluable patients (94%). The frequency of VT episodes or PVC burden was reduced by 75% in 89% of patients. Overall survival was 89% at 6 months and 72% at 12 months. Use of dual antiarrhythmic medications decreased from 59% to 12% (*P*=0.008). Quality of life improved in 5 of 9 Short Form-36 domains at 6 months.

CONCLUSIONS: Noninvasive electrophysiology-guided cardiac radioablation is associated with markedly reduced ventricular arrhythmia burden with modest short-term risks, reduction in antiarrhythmic drug use, and improvement in guality of life.

CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov/. Unique identifier: NCT02919618.

Clifford G. Robinson, MD Pamela P. Samson, MD, MPHS Kaitlin M.S. Moore, BS Geoffrey D. Hugo, PhD Nels Knutson, PhD Sasa Mutic, PhD S. Murty Goddu, PhD Adam Lang, MD Daniel H. Cooper, MD Mitchell Faddis, MD, PhD Amit Noheria, MBBS, SM Timothy W. Smith, D Phil, MD Pamela K. Woodard, MD Robert J. Gropler, MD

Pameia K. Woodard, ML Robert J. Gropler, MD Dennis E. Hallahan, MD Yoram Rudy, PhD Phillip S. Cuculich, MD

Key Words: noninvasive = stereotactic radiotherapy = ventricular tachycardla Sources of Funding, see page XXX © 2018 American Heart Association, Inc.

https://www.ahajournals.org/journal/circ

First Case in Germany

First CyberKnife Case

Example STAR with Versa HD and DIBH/Catalyst (Gating)

Performed by the best DIBH team in the world \odot

RAVENTA Study

Studienprotokoll

Radiochirurgie zur Behandlung therapierefraktärer ventrikulärer Extrasystolen und Tachykardien (RAVENTA)

Primary question

Multizentrische einarmige Studie

 Feasibility and 30 days morbidity and mortality of radiosurgery in the heart

Secondary questions

- Reduction of the occurrence of ventricular tachycardia
- → Short-term side effects up to 1 year after therapy
- → 20 Patients (multi-center, multi-platform)
- Primary Ethics Committee approval
- → Federal Office for Radiation Protection approval
- → Start started 10/2019, 6 centers live, 10 patients treated

RAVENTA to STOPSTORM

10 Patients	Anzahl der VT- Episoden						
Dose 80.00 Gy 27.50 Gy 25.00 Gy	140						
	Proposal Evaluation Form						
European Commission	EUROPEAN COMMISSION Horizon 2020 - Research and Innovation Framework Programme	Evaluation Summary Report - Research and innovation actions					
Call: Type of action: Proposal number: Proposal acronym: Duration (months): Proposal title:	H2020-SC1-2020-Two-Stage-RTD RIA 945119-2 STOPSTORM 72 A PROSPECTIVE EUROPEAN VALIDATION COHORT FOR STERE TACHYCARDIA	EOTACTIC THERAPY OF RE-ENTRANT					
Evaluation Result Total score: 14.00 (Threshold: 12)						

RAVENTA part of EU Horizon 2020 funded STOPStorm Project

STOPSTORM: Audit and Credentialing

Christian-Albrechts-Universität zu Kiel

Medizinische Fakultät

STereotactic Arrhythmia Radioablation (STAR)

1) Dose-Response Relationship

2) Target Definition and Conversion

3) Motion Management

4) Treatment Planning

5) Treatment

Target Definition for Ventricular Tachycardia

Clinical Investigation

Interdisciplinary Clinical Target Volume Generation for Cardiac Radioablation: Multicenter Benchmarking for the RAdiosurgery for VENtricular TAchycardia (RAVENTA) Trial

Judit Boda-Heggemann, MD, PhD,* Oliver Blanck, PhD,[†] Felix Mehrhof, MD,[‡] Floris Ernst, PhD,[§] Daniel Buergy, MD,* Jens Fleckenstein, PhD,* Erol Tülümen, MD,[∥] David Krug, MD,[†] Frank-Andre Siebert, PhD,[†] Adrian Zaman, MD,[¶] Anne K. Kluge, PhD,[‡] Abdul Shokor Parwani, MD,[#] Nicolaus Andratschke, MD,** Michael C. Mayinger, MD,** Stefanie Ehrbar, PhD,** Ardan M. Saguner, MD,^{††} Eren Celik, MD,^{‡‡} Wolfgang W. Baus, PhD,^{‡‡} Annina Stauber, MD,^{§§} Lena Vogel, MD,* Achim Schweikard, PhD,[§] Volker Budach, MD,[‡] Jürgen Dunst, MD,[†] Leif-Hendrik Boldt, MD,[#] Hendrik Bonnemeier, MD,[¶] and Boris Rudic, MD,[∥]

2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias

Edmond M. Cronin, MB, BCh, BAO, FHRS, CCDS, CEPS-A (Chair),¹ Frank M. Bogun, MD (Vice-Chair),² Philippe Maury, MD (EHRA Chair),³ Petr Peichl, MD, PhD (EHRA Vice-Chair),⁴ Minglong Chen, MD, PhD, FHRS (APHRS Chair),⁵ Narayanan Namboodiri, MBBS, MD (APHRS Vice-Chair),⁶ Luis Aguinaga, MD, PhD, FESC, FACC (LAHRS Chair),⁷ Luiz Roberto Leite, MD, PhD, FHRS (LAHRS Vice-Chair),⁸ Sana M. Al-Khatib, MD, MHS, FHRS, CCDS,⁹ Elad Anter, MD,¹⁰ Antonio Berruezo, MD, PhD,^{11,*} David J. Callans, MD, FHRS, CCDS,¹² Mina K. Chung, MD, FHRS,^{13,†} Phillip Cuculich, MD,¹⁴ Andre d'Avila, MD, PhD,^{15,‡} Barbara J. Deal, MD, FACC, ^{16,§} Paolo Della Bella, MD, ^{17,*} Thomas Deneke, MD, PhD, FHRS, ^{18,*} Timm-Michael Dickfeld, MD, PhD, FACC, FHRS, ¹⁹ Claudio Hadid, MD,^{20,¶} Haris M. Haggani, MBBS, PhD, FHRS,^{21,#} G. Neal Kay, MD, CCDS,²² Rakesh Latchamsetty, MD, FHRS,² Francis Marchlinski, MD, FHRS,¹² John M. Miller, MD, FHRS, 23,† Akihiko Nogami, MD, PhD, 24, ** Akash R. Patel, MD, FHRS, CEPS-P,^{25,††} Rajeev Kumar Pathak, MBBS, PhD, FHRS,^{26,#} Luis C. Saenz Morales, MD, 27, Pasquale Santangeli, MD, PhD, 12 John L. Sapp, Jr., MD, FHRS, 28 Andrea Sarkozy, MD, PhD, FEHRA, 29, * Kyoko Soejima, MD,^{30,#} William G. Stevenson, MD, FHRS,³¹ Usha B. Tedrow, MD, MS, FHRS, ³² Wendy S. Tzou, MD, FHRS, ³³ Niraj Varma, MD, PhD, ¹³ Katja Zeppenfeld, MD, PhD, FESC, FEHRA^{34,*}

Target Definition for Ventricular Tachycardia

METHOD AND ATLAS TO ENABLE TARGETING FOR CARDIAC **RADIOABLATION EMPLOYING THE AMERICAN HEART ASSOCIATION** SEGMENTED MODEL

Figure 1

A novel open-source software-based high-precision workflow

Novel Workflow for Conversion of Catheter-Based **Electroanatomic Mapping to DICOM Imaging for** Noninvasive Radioablation of Ventricular Tachycardia

Christopher L. Brett, MD,^{a,*} Jason A. Cook, MD,^b Asad A. Aboud, MD,^b Rashed Karim, PhD,^c Eric T. Shinohara, MD,^a and William G. Stevenson, MD, FHRS^b

for target definition in cardiac radioablation

STOPSTORM: Contouring Benchmark

Christian-Albrechts-Universität zu Kiel

Medizinische Fakultät

STereotactic Arrhythmia Radioablation (STAR)

1) Dose-Response Relationship

2) Target Definition and Conversion

3) Motion Management

4) Treatment Planning

5) Treatment

Motion Management for STAR

Motion management

Requirement: Systematic assessment and consistent consideration of periodic and non-periodic target motion during

- *imaging for treatment planning;*
- target volume definition;
- beam-delivery technique planning;
- dose simulation;
- target volume localization & repositioning; and
- dose application

Strahlenther Onkol

https://doi.org/10.1007/s00066-020-01583-2

REVIEW ARTICLE

Technological quality requirements for stereotactic radiotherapy

Expert review group consensus from the DGMP Working Group for Physics and Technology in Stereotactic Radiotherapy

Daniela Schmitt¹ : Oliver Blanck² · Tobias Gauer³ · Michael K. Fix⁴ · Thomas B. Brunner⁵ · Jens Fleckenstein⁶ · Britta Loutfi-Krauss⁷ · Peter Manser⁴ · Rene Werner⁸ · Maria-Lisa Wilhelm⁹ · Wolfgang W. Baus¹⁰ · Christos Moustakis¹¹

Critical Review

A Review of Cardiac Radioablation (CR) for Arrhythmias: Procedures, Technology, and Future Opportunities

Suzanne Lydiard, PGDip, *,† Oliver Blanck, PhD,‡ Geoffrey Hugo, PhD, $^{\$}$ Ricky O'Brien, PhD,* and Paul Keall, PhD*

Motion type

Motion Management Techniques

*Not yet used clinically

Respiratory Motion Compensation

Evaluation of motion compensation methods for non-invasive

cardiac radioablation of ventricular tachycardia

Table 3. Estimation of a gated internal target volume target expansion for each patient in three translational directions assuming the maximum value of the end exhale displacement from respiratory 4DCT and the full cardiac 4DCT to determine target motion is the driving determining factor for expansion.

	40%-60% r4D	CT+ Max c4D0	CT
Patient	LR (mm)	AP (mm)	SI (mm)
1	3.1	3.3	7.0
2	2.8	2.6	4.3
3	3.9	3.7	8.0
4	3.6	3.7	2.4
5	4.8	6.5	5.4
6	1.1	3.1	3.2
7	3.7	5.5	3.7
8	3.4	3.7	2.8
9	4.4	5.3	2.6
10	4.7	5.7	2.2
11	4.6	4.4	4.7
Mean	3.6	4.3	4.2
Std Dev	1.0	1.2	1.8

Open Access Case Report

Cardiac Radiosurgery for Malignant Ventricular Tachycardia

Jakub Cvek 1 , Radek Neuwirth 2 , Lukas Knybel 3 , Lukas Molenda 3 , Bretislav Otahal 3 , Jakub Pindor 2 , Mária Murárová 2 , Michal Kodaj 2 , Martin Fiala 2 , Marian Branny 2 , David Feltl 1

Table 2. Estimation of abdominal compression free-breathing internal target volume (ITV) for each patient assuming the maximum displacement between the r4DCT and c4DCT defined ITV.

	Full r4DCT+c4DCT						
Patient	LR (mm)	AP (mm)	SI (mm)				
1	3.1	3.9	7.0				
2	4.1	3.0	4.3				
3	4.3	5.4	8.0				
4	3.6	4.6	7.1				
5	4.8	6.5	5.4				
6	6.1	4.8	3.2				
7	3.7	5.5	7.2				
8	4.1	4.1	3.7				
9	4.4	5.3	4.1				
10	4.7	5.7	2.3				
11	6.9	4.4	7.9				
Mean	4.5	4.8	5.5				
Std Dev	1.1	0.9	2.0				

Cardiac Motion Ranges for Ventricular Tachycardia

Results: For the six contoured substructures, more than 90% of the measured displacements were <5 mm. For these patients, the average volumes ranged from 191.25 to 429.51 cc for LV and from 91.76 to 286.88 cc for RV. For each patient, the ratios of maximum to minimum volumes within a cardiac cycle ranged from 1.15 to 1.54 for LV and from 1.34 to 1.84 for RV.

Dosimetric Effects on Uncompensated Cardiac Motion

- Dominant heart motion from breathing (compensation for STAR necessary) but pulsing heart motion can not be compensated
- Cardiac ITV concept with respiratory motion compensation
- → In phantom studies, however, it has been shown that the dosimetric effects of rapid cardiac motion < 1 cm are very low</p>

Compensated Resp.

Full Motion Compensation

Real-time cardiorespiratory motion mitigated stereotactic arrhythmia radioablation on the MR-linac

> O Akdag^{1*}, P T S Borman¹, P Woodhead³, P Uijtewaal¹, S Mandija^{1,2}, B Van Asselen1, J J C Verhoeff¹, B W Raaymakers¹, M F Fast¹

Christian-Albrechts-Universität zu Kiel

Medizinische Fakultät

STereotactic Arrhythmia Radioablation (STAR)

1) Dose-Response Relationship

2) Target Definition and Conversion

3) Motion Management

4) Treatment Planning

5) Treatment

Critical Structure Dose Limits

ICD

Clinical Research in Cardiology https://doi.org/10.1007/s00392-020-01650-9

TRIAL DESIGN

Organs at risk	Dose recommendations/dose limitations	-Radiosurgery for ventricular tachycardia: preclinical and clinical evidence and study design for a German multi-center multi-platform			
Aorta Left coronary arteries	Dose limitations: $D_{max} \le 20.0 \text{ Gy}$ Minor protocol deviation: $20 \text{ Gy} < D_{max} \le 25 \text{ Gy}$ Major protocol violation: $D_{max} > 25 \text{ Gy}$ Dose limitations: $D_{max} \le 14.0 \text{ Gy}$ Minor protocol deviation: $14 \text{ Gy} < D_{max} \le 20 \text{ Gy}$ Major protocol violation: $D_{max} > 20 \text{ Gy}$	feasibility trial (RAVENTA) Oliver Blanck ¹ · Daniel Buergy ² · Maren Vens ^{3,4} · Lina Eidinger ^{1,5} · Adrian Zaman ⁵ · David Krug ¹ · Boris Rudic ⁶ · Judit Boda-Heggemann ² · Frank A. Giordano ² · Leif-Hendrik Boldt ⁷ · Felix Mehrhof ⁸ · Volker Budach ⁸ · Achim Schweikard ⁹ · Denise Olbrich ³ · Inke R. König ⁴ · Frank-Andre Siebert ¹ · Reinhard Vonthein ⁴ · Jürgen Dunst ¹ · Hendrik Bonnemeier ⁵ Radiotherapy Workflow and Dosimetric Analysis from a Phase I/II Trial of Noninvasive Cardiac Radioablation for Ventricular Tachycardia			
Superior vena cava Left atrium	Dose recommendations: $D_{50\%} \le 0.6 \text{ Gy}$ Dose recommendations: $D_{\text{max}} \le 4.4 \text{ Gy}$	Nels C. Knutson, PhD ^{1*} , Pamela Samson, MD, MPHS ^{1*} , Geoffrey Hugo, PhD ¹ , S. Murty Goddu, Francisco Reynoso, PhD ¹ , James Kavanaugh, MS ¹ , Sasa Mutic, PhD ¹ , Kaitlin Moore, BS ² , Jessic MS, CMD ¹ , Phillip Cuculich, MD ² , & Clifford Robinson, MD ¹			
Whole heart minus PTV	Dose recommendations: $D_{50\%} \le 5$ Gy		diotherapy Patients with Implanted Cardiac Pacemakers and		
Esophagus	Dose limitations: $D_{\text{max}} \le 14.5$ Gy and $V_{9\text{Gy}} \le 1$ ccm Minor protocol deviation: $D_{\text{max}} \le 19$ Gy, $D_{1\text{ccm}} \le 14.5$ Gy Major protocol violation: $D_{\text{max}} > 19$ Gy $\parallel D_{1\text{ccm}} > 14.5$ G	Defibrillators: $A R$ and $V_{9 \text{ Gy}} \le 4 \text{ ccm}$ $\ V_{9 \text{ Gy}} > 4 \text{ ccm}$ Co-Chair, Task Group 203, D	eport of the AAPM 1G-2U3* epartment of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045		
Trachea	Dose limitations: $D_{\text{max}} \le 15$ Gy and $V_{10 \text{ Gy}} \le 1$ ccm Minor protocol deviation: $D_{\text{max}} \le 20$ Gy, $D_{1 \text{ ccm}} \le 15$ Gy Major protocol violation: $D_{\text{max}} > 20$ Gy $ D_{1 \text{ ccm}} > 15$ Gy	$ \frac{\text{Dimitris Mihailidis**}}{V_{9 \text{ Gy}} \leq 4 \text{ ccm}} $	iniversity of Pennsylvania, Perelman Center for Advanced Medicine, Philadelphia, PA 19104		
Bronchial tree	Dose limitations: $D_{\text{max}} \le 15$ Gy and $V_{10\text{Gy}} \le 1$ ccm Minor protocol deviation: $D_{\text{max}} \le 20$ Gy, $D_{1 \text{ ccm}} \le 15$ Gy Major protocol violation: $D_{\text{max}} > 20$ Gy $D_{1 \text{ ccm}} > 15$ Gy	$\begin{array}{l} \text{Department of Radiation Phys}\\ \text{id } V_{10 \text{ Gy}} \leq 4 \text{ ccm}\\ V_{9 \text{ Gy}} > 4 \text{ ccm}\\ \end{array}$	Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, Texas 77030 Chester Reft Department of Radiation Oncology, University of Chicago, Chicago, Illinois 60637 Carlos Esquivel Department of Radiation Oncology, UT Health Sciences Center, San Antonio, Texas 78229 Jonathan Farr		
Spinal canal	Dose limitations: $D_{\text{max}} \le 7$ Gy and $V_{6 \text{ Gy}} \le 0.1$ ccm Minor protocol deviation: $D_{\text{max}} \le 8$ Gy, $V_{6 \text{ Gy}} \le 1$ ccm Major protocol violation: $D_{\text{max}} \ge 8$ Gy $V_{6 \text{ Gy}} \ge 1$ ccm	Carlos Esquivel Department of Radiation Once			
Skin	Dose limitations: $D_{\text{max}} \le 14.4 \text{ Gy}$ and $V_{10 \text{ Gy}} \le 10 \text{ ccm}$ Minor protocol deviation: $D_{\text{max}} \le 16 \text{ Gy}$, $V_{14.4 \text{ Gy}} \le 10 \text{ ccm}$ Major protocol violation: $D_{\text{max}} > 16 \text{ Gy} \parallel V_{14.4 \text{ Gy}} > 10 \text{ cc}$	Division of Radiological Scie David Followill Department of Radiation Phys	nces, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 sics, UT MD Anderson Cancer Center, Houston, Texas 77030		
Whole lungs	Dose limitations: $V_{100\%} - V_{7Gy} \ge 1500 \text{ ccm} (V_{7Gy} \text{ remain ccm})$ and $D_{5\%} \le 20 \text{ Gy}$ and $D_{50\%} \le 3.5 \text{ Gy}$ Minor protocol deviation: $V_{100\%} - V_{7Gy} \ge 1000 \text{ ccm} (V_{7Gy} \text{ cm})$ ume > 1000 ccm), $D_{6.5\%} \le 20 \text{ Gy}$ and $D_{50\%} \le 5 \text{ Gy}$ Major protocol violation: $V_{100\%} - V_{7Gy} < 1000 \text{ ccm} (V_{7Gy} \text{ cm})$ ume < 1000 ccm), $D_{6.5\%} \ge 20 \text{ Gy}$ and $D_{50\%} \ge 5 \text{ Gy}$	g volume > 1500 remaining vol- remaining vol- remaining vol- Olivier Gayou Department of Radiation Onc	Catharina Hospital, Eindhoven, The Netherlands ology, University of Colorado School of Medicine, Aurora, Colorado 80045 ology, Allegheny General Hospital, Pittsburg, Pennsylvania 15212		
ICD (major electronics)	Dose limitations: $D_{max} \le 0.5$ Gy and blocked from prima Minor protocol deviation: 0.5 Gy $< D_{max} \le 1.0$ Gy Major protocol violation: $D_{max} > 1.0$ Gy	/ beam irradiation Michael Gossman Department of Radiation Onc Mahadevappa Mahesh Department of Radiology, Joi	ology, Tri-State Regional Cancer Center, Ashland, Kentucky 41101 nns Hopkins University School of Medicine, Baltimore, Maryland 21287		

Treatment Planning for Ventricular Tachycardia

Critical Review

Dosimetric Multicenter Planning Comparison Studies for Stereotactic Body Radiation Therapy: Methodology and Future Perspectives

Francesca Romana Giglioli, MSc,* Cristina Garibaldi, MSc,[†] Oliver Blanck, PhD,[‡] Elena Villaggi, Msc,[§] Serenella Russo, MSc,^{||} Marco Esposito, PhD,^{||} Carmelo Marino, MSc,[¶] Michele Stasi, MSc,[#] and Pietro Mancosu, PhD**

Treatment planning for cardiac radiosurgery in patients with ventricular

tachycardia: benchmark study for the multi-institutional, multi-platform

RAVENTA clinical trial

Kluge, Ehrbar, Grehn, Fleckenstein, Baus, Andraschke, Mayiner, Boda-Heggemann, Buergy,

Krug, Saguner, Rudic, Boldt, Bonnemeier, Dunst, Budach, Blanck, Mehrhof

STOPSTORM: Treatment Planning Benchmark

A_LAD

Christian-Albrechts-Universität zu Kiel

Medizinische Fakultät

STereotactic Arrhythmia Radioablation (STAR)

1) Dose-Response Relationship

2) Target Definition and Conversion

3) Motion Management

4) Treatment Planning

5) Treatment

Critical Review

STAR Treatment with CyberKnife

A Review of Cardiac Radioablation (CR) for Arrhythmias: Procedures, Technology, and Future Opportunities

Suzanne Lydiard, PGDip, */† Oliver Blanck, PhD,‡ Geoffrey Hugo, PhD,\$ Ricky O'Brien, PhD,* and Paul Keall, PhD*

Table 2: Summary of procedural details and technology choice for human ventricular tachycardia (VT) and atrial fibrillation (AF) cardiac radioablation treatments using CyberKnife.

Study	Number of participants	Pre-planning EP & scar imaging	Imaging for planning	Arrhythmia	Prescription	Respiratory motion management	Cardiac motion management	Treatment motion management	Treatment time
Neuwirth <i>et al.,</i> 2019	10	EAM	Contrast-enhanced 3DCT x2 (ECG gated) in expiratory breath- hold	VT	25 Gy/1 fraction	Fiducial tracking (ICD lead)	ITV based on systole & diastole ECG-gated CT	kV orthogonal oblique planar intra- fraction imaging, & fiducial tracking (Synchrony).	Mean treatment time 68 min (range 45-80 min)
Gianni <i>et al.,</i> 2020	5	EAM, ECG, contrast- enhanced CT	Contrast-enhanced cardiac CT in expiratory breath-hold	VT	25 Gy/1 fraction	Fiducial tracking (Temporary pacing lead)	Pre-defined 3mm target volume margin expansion	kV orthogonal oblique planar intra- fraction imaging & fiducial tracking (X- sight spine tracking & Synchrony)	Mean treatment times 82 min (range 71-93 min)
Loo et al., 2015	1	12-lead ECG, ECHO, PET-CT	3DCT in breath-hold & fluoroscopy images of cardiac fiducials in breath-hold	VT	25 Gy/1 fraction	Fiducial tracking (Temporary pacing wire)	ITV based on breath-hold fluoroscopy of cardiac fiducials.	kV orthogonal oblique planar intra- fraction imaging & fiducial tracking (Synchrony)	90 min (approx.)
Jumeau <i>et al.</i> , 2018	1	EAM, MRI, ECHO, PET	Non-contrast CT under GA & transthoracic echocardiography	VT	25 Gy/1 fraction	Fiducial tracking (ICD lead)	Motion assessed by transthoracic echocardiography	kV orthogonal oblique planar intra- fraction imaging & fiducial tracking (Synchrony)	45 min (approx.)
Cvek <i>et al.</i> , 2014	1	EAM, CT	3DCT (pre-acquired diagnostic scan)	VT	25 Gy/1 fraction	Fiducial tracking (LC electrode of stimulation system)	ITV based on systole & diastole	kV orthogonal oblique planar intra- fraction imaging & fiducial tracking (Synchrony)	114 min
Zeng <i>et al.,</i> 2019	1	12-lead ECG and EAM	3DCT & fluoroscopy In breath-hold	VT	24 Gγ/3 fractions	Fiducial tracking (Active-fixation pacing lead)	ITV based on breath-hold fluoroscopy of cardiac fiducials.	kV orthogonal oblique planar intra- fraction imaging & fiducial tracking (Synchrony) assumed	Not reported
Monroy et al., 2016	1	None	СТ	AF	25 Gy/1 fraction	Fiducial tracking	None (assumed as no mention)	kV orthogonal oblique planar intra- fraction imaging, & fiducial tracking	Not reported
Qian <i>et al.,</i> 2019	2	None	Contrast-enhanced cardiac CT	AF	25 Gy/1 fraction	Fiducial tracking (Active fixation lead in interatrial septum)	None (assumed as no mention)	kV orthogonal oblique planar intra- fraction imaging, & fiducial tracking	90 min (approx.)

3DCT = three-dimensional computed tomography, AF = atrial fibrillation, CT = computed tomography, EAM = electroanatomical mapping, ECG = electrocardiography, ECHO = echocardiography, GA = general anesthetic, ITV = internal target volume, kV = kilovoltage, MRI = magnetic resonance imaging, PET = positron emission tomography, VT = ventricular tachycardia

STAR Treatment with C-Arm Linear Accelerators

Table 3: Summary of procedural details and technology choice for human ventricular tachycardia (VT) cardiac radioablation treatments using c-arm linear accelerators. No cardiac radioablation treatments for atrial fibrillation (AF) have been performed on c-arm linear accelerators.

Study	Number of participants	Pre-planning EP & scar imaging	Imaging for planning	Arrhythmia	Prescription	Motion management	Treatment planning margins	Linac & treatment type	Immobilization	Treatment set-up /IGRT	Timeframes
*Cuculich <i>et al.,</i> 2017 *Robinson <i>et al.,</i> 2019 *Knutson <i>et al.,</i> 2019	19 (combined total)	Multi-electrode vest with CT registration, EAM, CT, contrast- enhanced MRI, ECHO, PET-CT	Contrast- enhanced 3DCT & 4DCT free- breathing	VT	25 Gy/1 fraction	Cardiac & respiratory: combined ITV. Abdominal compression used as needed.	ITV from 4DCT 5 mm ITV-PTV expansion	Varian TrueBeam or Edge 6 MV flat or FFF VMAT or IMRT	Vacuum-assisted cushion with vacuum- sealed layer or foam cushion with abdominal compression Overhead arm extension	Pre-fraction CBCT registered to respiratory-averaged planning CT, fluoroscopy to confirm shifts, 6dof couch	Simulation on average 13.5 days before treatment, mean treatment delivery time 14 min (5.4-32.3 min)
Lloyd <i>et al.,</i> 2019	10	At least 1 3D anatomical imaging and 1 EP study with EAM	Contrast- enhanced 3DCT & 4DCT free- breathing	VT	25 Gy/1 fraction	Cardiac & respiratory: combined ITV	1-5 mm scar to PTV expansion	Varian TrueBeam VMAT	Rigid immobilization consistent with Lung SBRT treatments	Pre-fraction kV planar & CBCT matched to bony anatomy and ICD leads	One hour between departure and return to clinical care unit. RT appointment 30 min
Marti-Almor et al., 2019	1	Previous EAM, MRI, CT	Unclear	VT	25 Gγ/1 fraction	External surrogate amplitude-based respiratory gating	Not reported	Varian TrueBeam 10FFF DCA & static fields	Vacuum assisted device	Pre-fraction CBCT	4 min treatment delivery
Bhaskaran <i>et ol.,</i> 2019	. 1	EAM, MRI	Contrast- enhanced 3DCT & 4DCT free-breathing	VT	25 Gy/1 fraction	Cardiac & respiratory: combined ITV	ITV from 4DCT 5-8 mm margin to include adjacent myocardial tracts, 5 mm ITV-PTV expansion	Varian TrueBeam 6FFF VMAT	Supine position with external thermoplastic shoulder immobilization	Volumetric cine on day of treatment (Canon Genesis 320 slice scanner) to verify planning margins adequate & pre- fraction CBCT	5 min treatment delivery
Krug et al., 2019	1	EAM, cardiac-gated CT	Non-contrast 4DCT free- breathing	VT	25 Gy/1 fraction	Cardiac & respiratory: combined ITV	ITV from cardiac- gated and free- breathing planning 4DCT, 5 mm ITV-PTV expansion	Varian TrueBeam 6FFF Co-planar DCA	Supine position with elevated arms. No vacuum bag or abdominal compression	Pre-fraction and between arcs CBCT, using ICD lead as reference for image registration	Patient positioning and setup of monitoring equipment approx. 40 min. Treatment and image guidance time approx. 15 min
Scholz <i>et al.,</i> 2019	1	EAM, coronary angiography, LV angiography	4DCT	VT	25 Gγ/1 fraction	Cardiac & respiratory: combined ITV with mechanical ventilation	ITV from 4DCT, 2 mm ITV-PTV expansion	Elekta VersaHD 6FFF VMAT	Deeply sedated and mechanical ventilation	Pre-fraction 4D CBCT and kV planar	30 min treatment appointment, 5 min for image guidance, 5 min for delivery
Mayinger <i>et al.,</i> 2020	1	Contrast-enhanced MRI, non-contrast MRI, surface ECG, invasive EAM	CT & 3D MRI	VT	25 Gy/1 fraction	MRI-guided tracking of liver-dome with automatic beam gating & breath- hold	PTV 2 mm vertical and lateral, 3 mm longitudinal expansion	Hybrid MRI- Linac 6FFF IMRT	Supine position, arms raised above head	3D MRI matching GTV to planning images, 2D single-slice sagittal cine for MRI-guided tracking	Total duration 148 min; patient set-up 24 min, target localization & set- up 6 min, MR cine tracking 46min, beam on time 24 min

Summary

- → STereotactic Arrhythmia Radioablation (STAR) is used for Ventricular Tachycardia (n > 150) and Atrial Fibrillation (n ≈ 5) patients with limited to no standard treatment options
- → Motion Management similar to thoracic SBRT with consideration of cardiac motion (ITV)

Critical Review

A Review of Cardiac Radioablation (CR) for Arrhythmias: Procedures, Technology, and Future Opportunities

Suzanne Lydiard, PGDip,* *† Oliver Blanck, PhD, ‡ Geoffrey Hugo, PhD, $^{\$}$ Ricky O'Brien, PhD,* and Paul Keall, PhD*

CONTEMPORARY REVIEW

Cardiac radioablation—A systematic review @

Recommendations regarding cardiac stereotactic body radiotherapy for treatment refractory ventricular tachycardia @

David Krug, MD,* Oliver Blanck, PhD,* Nicolaus Andratschke, MD,[†] Matthias Guckenberger, MD,[†] Raphael Jumeau, MD,^{‡§} Felix Mehrhof, MD,^{||} Judit Boda-Heggemann, MD,[¶] Katharina Seidensaal, MD,[#] Jürgen Dunst, MD,* Etienne Pruvot, MD,** Eberhard Scholz, MD,^{††} Ardan M. Saguner, MD,^{‡‡} Boris Rudic, MD,^{§§} Leif-Hendrik Boldt, MD,^{|||} Hendrik Bonnemeier, MD^{¶¶}

- → Fast delivery of 25 Gy (with potentially doses higher 30 Gy) to the VT substrate seem to be clinically effective and safe
- → A dedicated STAR protocol and expert guidance ideally in clinical trials or prospective registries is strongly recommended

UK SH

We still have a lot to do!

Christian-Albrechts-Universität zu Kiel

Medizinische Fakultät

Unter der wissenschaftlichen Leitung der Kliniken für Elektrophysiologie

		rurgie							
		Moderation: AG EP (DGK), AG RS (DEC	GRO)						
	11:00 Uhr	Harmonisierungsansätze für die Katheterablation bei Ventrikulären Tachykardien (AG EP)	AG EP: Prof. Dr. Philipp Sommer (Bad Oeynhausen)						
	11:15 Uhr	Harmonisierungsansätze für die (kardiale) Stereotaktische Strahlentherapie (AG RS)	AG RS: Prof. Dr. Andrea Wittig (Jena)						
F	11.30 Uhr	Erster Delphi-Konsensus ausgewählter deutschsprachiger Zentren	PD Dr. David Krug (Kiel)						
P	11.50 Uhr	STOPSTORM: Aktueller Projektstand und Pattern-Of-Practice in Europa	Dr. Oliver Blanck (Kiel)						
	12.10 Uhr	Initiierung eines gemeinsamen Arbeitsgruppen-Konsensus	AG EP / AG RS						
	12.30 Uhr	Abschlussdiskussionen	Alle						