PACE trial update

Dr Nicholas van As <u>nicholas.vanas@rmh.nhs.uk</u> [view] @nickva1

Hamburg: 23 November 2018

Where are we today with hypofractionation?

4 Large RCT's of "moderate hypofractionation"

RTOG 0415 (USA)

PROFIT (Canada)

The ROYAL MARSDEN NHS Foundation Trust

CHHIP (UK)

Lancet Oncol. 2016 Aug;17(8):1047-60.

Baseline characteristics

	(N=3216)
	%
Age (Median)	69
Risk group	
High Risk	12
Intermediate Risk	73
Low Risk	15
Pre-hormone PSA	
(ng/ml)	10

Time to biochemical failure/prostate cancer recurrence – control arm

Time to biochemical failure/prostate cancer recurrence – primary analysis

Non-inferiority analysis (ITT)

Biochemical failure or prostate	74Gy/37f	60Gy/20f	57Gy/19f		
cancer recurrence	(n=1065)	(n=1074)	(n=1077)		
Number of events	138	119	164		
KM 5 year proportion event-free	<u> </u>		85.8 (83.3 <i>,</i> 87.9)		
estimate (95% CI)	88.5 (80.0, 90.2)	90.3 (88.4, 92.2)			
Hazard ratio (90% CI)		0.83 (0.68, 1.02)	1.19 (0.99, <u>1.44</u>)		
Pr(HR<1.208)		p=0.003	p=0.91		
Log rank n value		p=0.14	p=0.13		
		p=0.	003		
Absolute difference at 5 years		196/036363	-2.10 (-4.74, 0.16)		
(90% CI)		1.00 (-0.20, 5.02)			
Absolute difference at 5 years					
(90% CI)		-3.84 (-0.3	02, -1.38)		

HR<1 favours hypofractionation

Short-term side-effects – bowel and bladder

Late side-effects – RTOG bowel

Late side-effects – LENT-SOM bladder

What about "profound" hypofractionation?

ife demands excellence

Can we go above 3 Gy/fraction?

Biologically effective dose of 36.25 Gy in 5 fractions

	BED if α/β ratio = 5	BED if α/β ratio = 4	BED if α/β ratio = 3	BED if α/β ratio = 2.7	BED if α/β ratio = 1.5
78 Gy in 39 fractions	109 Gy	117 Gy	130 Gy	135 Gy	182 Gy
36.25 Gy in 5 fractions	88 Gy	101 Gy	123Gy	134 Gy	211 Gy
40 Gy in 5 fractions	104 Gy	120 Gy	147 Gy	158 Gy	253 Gy

Until 2013, state of the evidence base...

		Fractionation	Stage	PSA	Gleason	Low risk	Int risk	High risk	5 yr bRFS: low risk	5 yr bRFS High risk
	Freeman 2011 (3c) 41 patients	35-36.35 Gy in 5 #	Low risk	<10	3+3			None	93%	
	Madsen et al 2007 (39) 40 pts	33.5 Gy in 5 #	T1c or T2a	10 or less	Gl 6 or less	100%			48 month bRFS 90%	
	King 2011 (40) 67 men	36.25 Gy in 5 #	T1c or T2a/b	<10	3+4 or less			None	4-year bRFS 94%	
(Katz 2010 (41) 304 patients	35 Gy-36.25 Gy in 5 #	92% T1c	Median 5.8	73% Gl6 23 % Gl 7	70%		4%	1.3 % failed so far (17-30 month FU)	
(Jabbari et al 2011 (42) 20 pt cohort	38 Gy in 4 fraction	T1c- T3a	Median 7.5	Any				Median follow 100% bRFS	y up 18.3 months
	Kang et al 2011 (43) 44 patients	32-36 Gy in 4 #	T1c-T3	Median 15.8	4-9	5%		29%	100%	90.9%
(Boike et al 2011 (44) 45 patients	45-50 Gy in 5 # (dose escalation cohorts)	T1c- T2b	Median 5.6	6-7 (36% Gleason 3+4)	40%		0%	Median follow 100% bRFS	y up 12-30 months
	MCB:nue 2012 (4.) 45 patients	36.25-37.5 in 5 #				100%		0%	3 yr bRFS 97.7% Median PSA at 6 months 1.8	
	Tang et al 2008 (46) 30 pts	35 Gy in 5 weekly#	T1-T2b	All <10 Median 6	All Gleason 6	100%		0%		
	Leo et al 2012 (47) 29 pts	36 Gy in 5 #	79% T2	Median 7.96	Median Gleason 6	14 %		21%	41 month bRF	S 86%

Contents lists available at ScienceDirect

Radiotherapy and Oncology

journal homepage: www.thegreenjournal.com

Original article

Stereotactic body radiotherapy for localized prostate cancer: Pooled analysis from a multi-institutional consortium of prospective phase II trials *

Christopher R. King^{a,*}, Debra Freeman^b, Irving Kaplan^c, Donald Fuller^d, Giampaolo Bolzicco^e, Sean Collins^f, Robert Meier^g, Jason Wang^a, Patrick Kupelian^a, Michael Steinberg^a, Alan Katz^h

^a Department of Radiation Oncology, UCLA, Los Angeles, CA; ^bNaples Radiation Oncology, Naples, Florida; ^cDepartment of Radiation Oncology, Beth Israel Deaconness, Boston, MA; ^d Radiosurgery Medical Group, San Diego, CA, United States; ^eDivision of Radiation Oncology, San Bortolo Hospital, Vicenza, Italy; ^fDepartment of Radiation Oncology, Georgetown University, Washington DC; ^gDepartment of Radiation Oncology, Swedish Medical Center, Seattle, WA; and ^hFlushing Radiation Oncology, Flushing, NY, United States **Clinical Investigation**

Health-Related Quality of Life After Stereotactic Body Radiation Therapy for Localized Prostate Cancer: Results From a Multi-institutional Consortium of Prospective Trials

Christopher R. King, PhD, MD,* Sean Collins, MD,[†] Donald Fuller, MD,[‡] Pin-Chieh Wang, PhD,* Patrick Kupelian, MD,* Michael Steinberg, MD,* and Alan Katz, MD, JD[§]

*Department of Radiation Oncology, University of California, Los Angeles, California; [†]Department of Radiation Oncology, Georgetown University, Washington, District of Columbia; [‡]Genesis Healthcare Partners, San Diego, California; and [§]Flushing Radiation Oncology, Flushing, New York

Received Jun 25, 2013, and in revised form Aug 17, 2013. Accepted for publication Aug 19, 2013.

Results

"It is ASTRO's opinion that data supporting the use of SBRT for prostate cancer have matured to a point where **SBRT could be considered an appropriate alternative** for select patients with low to intermediate risk disease."

Multicenter Trial of Stereotactic Body Radiation Therapy for Low- and Intermediate-Risk Prostate Cancer: Survival and Toxicity Endpoints

309 patients, prospective, multicentre Phase II40 Gy in 5 to CTV, 36.25 Gy in 5 to PTV5 year PFS 97.1%

Abstract 74; Table 1											
		GU Toxici	GI	Toxicity							
	Gr1	Gr2	Gr3	Gr4+	Gr1	Gr2	Gr3+				
Any time	165 (53%)	108 (35%)	5 (2%)	0	183 (59%)	31 (10%)	0				
< 3 mos	182 (59%)	79 (26%)	0	0	169 (55%)	25 (8%)	0				
> 3 mos	87 (28%)	38 (12%)	5 (2%)	0	38 (12%)	6 (2%)	0				

Int J Radiat Oncol Biol Phys. 2018 Oct 1;102(2

Hypo Trial

PACE (Prostate Advances in Comparative Evidence)

Study Summary

24

TitleThe PACE trial: International Randomised Study of
Prostatectomy vs Stereotactic Body Radiotherapy (SBRT)
and Conventional Radiotherapy vs SBRT for Early Stage
Organ-Confined Prostate Cancer.

Aim In the primary management of early stage organ-confined prostate cancer, to assess whether hypofractionated stereotactic body radiotherapy (SBRT) offers benefit over prostatectomy or conventional radiotherapy.

Design Multicentre, international phase 3 randomised controlled study comprising two parallel randomisations with a common experimental arm.

Objectives In PACE-A:

Primary: To determine whether there is improved quality of life following prostate SBRT compared with prostatectomy two years from completion of trial treatment.

In PACE-B:

Primary: To determine whether prostate SBRT is non inferior to conventional radiotherapy for freedom from biochemical/clinical failure in low/ intermediate risk prostate cancer.

PACE (Prostate Advances in Comparative Evidence) Study Schema

CR The Institute of Cancer Research

PACE (Prostate Advances in Comparative Evidence) Study Summary

Primary endpoints

In PACE-A:

Co-primary patient reported outcomes:

(1) Urinary incontinence (number of absorbent pads required per day to control leakage) measured by The Expanded Prostate Cancer Index (EPIC) questionnaire.

(2) Bowel bother summary score from the EPIC questionnaire.

The main time point of interest is 2 years post treatment.

In PACE-B:

Freedom from biochemical (Phoenix definition for conventional radiotherapy and SBRT arms, >0.2 ng/ml for surgical arm) or clinical (commencement of androgen deprivation therapy) failure. The main time point of interest is 5 years from randomisation.

In PACE-A and PACE-B, common secondary objectives:

local failure distant failure disease-free survival disease-specific survival overall survival toxicity quality of life in generic and organ specific domains

Inclusion Criteria

- Histological confirmation of prostate adenocarcinoma with a minimum of 10 biopsy cores taken within the last 18 months (unless on active surveillance and not clinically indicated see section 9, Patient selection).
- Gleason score $\leq 3+4$
- Men aged ≥ 18 years at randomisation
- Clinical and/or MRI stage T1c –T2c, No-X, Mo-X
- $PSA \le 20 \text{ ng/ml}$
- Pre-enrolment PSA must be completed within 60 days of randomisation
- Patients belonging in one of the following risk groups according to the National Comprehensive Cancer Network (<u>www.nccn.org</u>):

Low risk:

Clinical stage T1-T2a and Gleason \leq 6 and PSA < 10 ng/ml, or

Intermediate risk (includes any one of the following): Clinical stage T2b orT2c or PSA 10-20 ng/ml, or Gleason 7 (3+4 for PACE)

- WHO performance status 0 2
- Ability of the research subject to understand and the willingness to sign a written informed consent document

Proposed PACE C trial

<u>32</u>

The Royal Marsde

Current Status Summary

Life demands excellence

³³ PACE (Prostate Advances in Comparative Evidence) **Current Status**

PACE-A • Open to Recruitment

- 9 centres open
- 93 patients recruited (target 234)

PACE-B

- **B** Closed to Recruitment (05 Jan 2018)
 - Recruited 874 patients (Target 858)
 - Recruited to target 6 months ahead of target
 - Patients have all received treatment and are in follow-up
 - Up to 12 week Acute toxicity analysis planned

PACE-C

- Funding agreed
 - Protocol in development
 - Aim to start accrual at the start of 2019

34

PACE-A: Accrual

Life demands excellence

PACE-A: Actual and target cumulative recruitment Accrual to 15 November 2018

<u>36</u>

The Royal Marsden

PACE-B: Accrual

Life demands excellence

³⁷ PACE-B: Actual and target cumulative recruitment

Accrual to 05 January 2018 (Closed to recruitment)

Genitourinary Cancers Symposium

February 14-16, 2019 Moscone West Building San Francisco, CA #GU19

SU®

PACE B acute toxicity submitted as a late breaking abstract

PACE Trial Team Contact details

ICR-CTSU PACE Trial Team pace-icrctsu@icr.ac.uk

The Institute of Cancer Research Clinical Trials and Statistics Unit 15 Cotswold Road Sutton SM2 5NG

Tel: (0)20 8722 4467 Fax: (0)20 8770 7876

Web: www.icr.ac.uk/icr-ctsu

Thank you

